首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
进入21世纪,遥感技术成为一项非常重要的空间成像技术。高光谱图像分类是遥感技术应用中非常重要的一项研究内容,在民用和军用上都实现了应用。高光谱图像分类是通过给每个像元添加分类标签,最终达到区分地物并且识别目标的目的。本文简要阐述了高光谱图像的分类过程及其面临的主要问题;在总结前人研究的基础上归纳了4类主要的高光谱图像分类策略,简要分析了其优缺点及适用范围;分析了近年来出现的新型分类器及其优化方法。最后,对于高光谱图像分类研究存在的主要困难进行了总结,并对未来发展的方向进行了展望。  相似文献   

2.
A system for a regular updating of land-cover maps is proposed that is based on the use of multitemporal remote sensing images. Such a system is able to address the updating problem under the realistic but critical constraint that, for the image to be classified (i.e., the most recent of the considered multitemporal dataset) no ground truth information is available. The system is composed of an ensemble of partially unsupervised classifiers integrated in a multiple-classifier architecture. Each classifier of the ensemble exhibits the following novel characteristics: (1) it is developed in the framework of the cascade-classification approach to exploit the temporal correlation existing between images acquired at different times in the considered area; and (2) it is based on a partially unsupervised methodology capable of accomplishing the classification process under the aforementioned critical constraint. Both a parametric maximum-likelihood (ML) classification approach and a nonparametric radial basis function (RBF) neural-network classification approach are used as basic methods for the development of partially unsupervised cascade classifiers. In addition, in order to generate an effective ensemble of classification algorithms, hybrid ML and RBF neural-network cascade classifiers are defined by exploiting the characteristics of the cascade-classification methodology. The results yielded by the different classifiers are combined by using standard unsupervised combination strategies. This allows the definition of a robust and accurate partially unsupervised classification system capable of analyzing a wide typology of remote sensing data (e.g., images acquired by passive sensors, synthetic aperture radar images, and multisensor and multisource data). Experimental results obtained on a real multitemporal and multisource dataset confirm the effectiveness of the proposed system.  相似文献   

3.
徐超  冯燕 《电子设计工程》2014,(23):181-183
在对高光谱图像进行分类时,由于高光谱数据维度很高,通常先对其进行特征选择,进而使用分类器进行分类。在分类时,最大似然分类器因为具有多分类、概率输出等特点而经常被采用。在实际分类中,我们发现,目标的真实类别所获得的概率值通常位于所有类别的前两位,我们称该现象为混淆现象。利用这一现象,通过特征重选择,我们给出一种新颖的特征选择框架。该框架首先对数据进行特征选择,进而对目标进行分类。若分类结果满足混淆条件,则针对易混淆的两类进行特征重选择,分类并得到最终结果。理论分析和实验结果表明,该框架稳定、有效。  相似文献   

4.
Multiple classifiers applied to multisource remote sensing data   总被引:5,自引:0,他引:5  
The combination of multisource remote sensing and geographic data is believed to offer improved accuracies in land cover classification. For such classification, the conventional parametric statistical classifiers, which have been applied successfully in remote sensing for the last two decades, are not appropriate, since a convenient multivariate statistical model does not exist for the data. In this paper, several single and multiple classifiers, that are appropriate for the classification of multisource remote sensing and geographic data are considered. The focus is on multiple classifiers: bagging algorithms, boosting algorithms, and consensus-theoretic classifiers. These multiple classifiers have different characteristics. The performance of the algorithms in terms of accuracies is compared for two multisource remote sensing and geographic datasets. In the experiments, the multiple classifiers outperform the single classifiers in terms of overall accuracies.  相似文献   

5.
欧阳宁  高鑫  袁华 《电视技术》2016,40(10):22-27
为了改善传统分类方法在高光谱遥感图像去噪和特征提取方面的不足,提出了一种基于改进的扩散平滑算法和RBM的方法.该方法使用自适应扩散系数,对相应的区域进行不同程度的扩散平滑,实现了对高光谱遥感图像的快速去噪;然后利用多层限制玻尔兹曼机构建DBN网络,实现对高光谱遥感图像的分类.实验表明,与传统的分类方法和DBN相比,该方法在高光谱图像地物分类精度上有所改善.  相似文献   

6.
Support vector machines (SVMs) are receiving increased attention in different application domains for which neural networks (NNs) have had a prominent role. However, in quality monitoring little attention has been given to this more recent development encompassing a technique with foundations in statistic learning theory. In this paper, we compare C-SVM and /spl nu/-SVM classifiers with radial basis function (RBF) NNs in data sets corresponding to product faults in an industrial environment concerning a plastics injection molding machine. The goal is to monitor in-process data as a means of indicating product quality and to be able to respond quickly to unexpected process disturbances. Our approach based on SVMs exploits the first part of this goal. Model selection which amounts to search in hyperparameter space is performed for study of suitable condition monitoring. In the multiclass problem formulation presented, classification accuracy is reported for both strategies. Experimental results obtained thus far indicate improved generalization with the large margin classifier as well as better performance enhancing the strength and efficacy of the chosen model for the practical case study.  相似文献   

7.
基于稀疏表示及光谱信息的高光谱遥感图像分类   总被引:11,自引:1,他引:10  
该文结合稀疏表示及光谱信息提出了一种新的高光谱遥感图像分类算法。首先提出利用高光谱遥感图像数据集构造学习字典,然后根据学习字典计算每个像元的稀疏系数,从而获得像元的稀疏表示特征,最后根据稀疏表示特征和光谱信息分别构造随机森林,通过投票机制得到最终的分类结果。在AVIRIS高光谱遥感图像上的实验结果表明:该文所提方法能够提高分类效果,且其分类总精度和Kappa系数要高于光谱信息和稀疏表示特征方法。  相似文献   

8.
It is shown that various classifiers that are based on minimization of a regularized risk are universally consistent, i.e., they can asymptotically learn in every classification task. The role of the loss functions used in these algorithms is considered in detail. As an application of our general framework, several types of support vector machines (SVMs) as well as regularization networks are treated. Our methods combine techniques from stochastics, approximation theory, and functional analysis  相似文献   

9.
熊余  单德明  姚玉  张宇 《红外技术》2022,44(1):9-20
针对现有高光谱遥感图像卷积神经网络分类算法空谱特征利用率不足的问题,提出一种多特征融合下基于混合卷积胶囊网络的高光谱图像分类策略。首先,联合使用主成分分析和非负矩阵分解对高光谱数据集进行降维;然后,将降维所得主成分通过超像素分割和余弦聚类生成一个多维特征集;最后,将叠加后的特征集通过二维、三维多尺度混合卷积网络进行空谱特征提取,并使用胶囊网络对其进行分类。通过在不同高光谱数据集下的实验结果表明,在相同20维光谱维度下,所提策略相比于传统分类策略在总体精度、平均精度以及Kappa系数上均有明显提升。  相似文献   

10.
高光谱图像中包含丰富的光谱特征和空间特征,这对地表物质的分类至关重要.然而高光谱图像的空间分辨率相对较低,使得图像中存在大量的混合像素,这严重制约物质分类的精度.受到观测噪声、目标区域大小及端元易变性等因素的影响,使得高光谱图像的分类仍然面临诸多挑战.随着人工智能和信息处理技术的不断进步,高光谱图像分类已成为遥感领域的...  相似文献   

11.
Noninvasive electroencephalogram (EEG) recordings provide for easy and safe access to human neocortical processes which can be exploited for a brain-computer interface (BCI). At present, however, the use of BCIs is severely limited by low bit-transfer rates. We systematically analyze and develop two recent concepts, both capable of enhancing the information gain from multichannel scalp EEG recordings: 1) the combination of classifiers, each specifically tailored for different physiological phenomena, e.g., slow cortical potential shifts, such as the pre-movement Bereitschaftspotential or differences in spatio-spectral distributions of brain activity (i.e., focal event-related desynchronizations) and 2) behavioral paradigms inducing the subjects to generate one out of several brain states (multiclass approach) which all bare a distinctive spatio-temporal signature well discriminable in the standard scalp EEG. We derive information-theoretic predictions and demonstrate their relevance in experimental data. We will show that a suitably arranged interaction between these concepts can significantly boost BCI performances.  相似文献   

12.
Dimensionality reduction is becoming an important problem in hyperspectral image classification. Band selection as an effective dimensionality reduction method has attracted more research interests. In this paper, a band selection method for hyperspectral remote sensing images based on subspace partition and particle frog leaping optimization algorithm is proposed. Three new evolution strategies are designed to form a probabilistic network extension structure to avoid local convergence. At the same time, the information entropy of the selected band subset is used as the weight of inter-class separability, and a new band selection criterion function is constructed. The simulation results show that the proposed algorithm has certain advantages over the existing similar algorithms in terms of classification accuracy and running time.  相似文献   

13.
为满足高光谱遥感图像定量化解译的需求,针对现有大气校正方法面临的大气参数不同步问题,对基于大气参数空间同步获取的大气辐射校正技术进行了研究。首先总结了利用卫星搭载专用大气辐射校正载荷,同步提供大气校正参数与地表反射特性的方法,从根本上解决辐射传输模型中的大气参数难以同步获取的问题。其次结合国外在轨运行的高光谱遥感卫星的调研结果,在大气校正载荷的设计—尤其是谱段选择和优化方面对载荷系统的方案特点和技术指标进行了归纳。并选取EO-1 Hyperion高光谱遥感图像进行了大气校正,从校正前后图像的视觉效果、光谱特性、典型地物的分类识别效果三方面分析了大气校正对高光谱遥感定量化应用性能的提升。最后对大气辐射校正技术的发展前景进行展望。  相似文献   

14.
Monocular precrash vehicle detection: features and classifiers.   总被引:3,自引:0,他引:3  
Robust and reliable vehicle detection from images acquired by a moving vehicle (i.e., on-road vehicle detection) is an important problem with applications to driver assistance systems and autonomous, self-guided vehicles. The focus of this work is on the issues of feature extraction and classification for rear-view vehicle detection. Specifically, by treating the problem of vehicle detection as a two-class classification problem, we have investigated several different feature extraction methods such as principal component analysis, wavelets, and Gabor filters. To evaluate the extracted features, we have experimented with two popular classifiers, neural networks and support vector machines (SVMs). Based on our evaluation results, we have developed an on-board real-time monocular vehicle detection system that is capable of acquiring grey-scale images, using Ford's proprietary low-light camera, achieving an average detection rate of 10 Hz. Our vehicle detection algorithm consists of two main steps: a multiscale driven hypothesis generation step and an appearance-based hypothesis verification step. During the hypothesis generation step, image locations where vehicles might be present are extracted. This step uses multiscale techniques not only to speed up detection, but also to improve system robustness. The appearance-based hypothesis verification step verifies the hypotheses using Gabor features and SVMs. The system has been tested in Ford's concept vehicle under different traffic conditions (e.g., structured highway, complex urban streets, and varying weather conditions), illustrating good performance.  相似文献   

15.
It is well known in the pattern recognition community that the accuracy of classifications obtained by combining decisions made by independent classifiers can be substantially higher than the accuracy of the individual classifiers. We have previously shown this to be true for atlas-based segmentation of biomedical images. The conventional method for combining individual classifiers weights each classifier equally (vote or sum rule fusion). In this paper, we propose two methods that estimate the performances of the individual classifiers and combine the individual classifiers by weighting them according to their estimated performance. The two methods are multiclass extensions of an expectation-maximization (EM) algorithm for ground truth estimation of binary classification based on decisions of multiple experts (Warfield et al., 2004). The first method performs parameter estimation independently for each class with a subsequent integration step. The second method considers all classes simultaneously. We demonstrate the efficacy of these performance-based fusion methods by applying them to atlas-based segmentations of three-dimensional confocal microscopy images of bee brains. In atlas-based image segmentation, multiple classifiers arise naturally by applying different registration methods to the same atlas, or the same registration method to different atlases, or both. We perform a validation study designed to quantify the success of classifier combination methods in atlas-based segmentation. By applying random deformations, a given ground truth atlas is transformed into multiple segmentations that could result from imperfect registrations of an image to multiple atlas images. In a second evaluation study, multiple actual atlas-based segmentations are combined and their accuracies computed by comparing them to a manual segmentation. We demonstrate in both evaluation studies that segmentations produced by combining multiple individual registration-based segmentations are more accurate for the two classifier fusion methods we propose, which weight the individual classifiers according to their EM-based performance estimates, than for simple sum rule fusion, which weights each classifier equally.  相似文献   

16.
提出了一种基于非线性核空间映射人工免疫网络的高光谱遥感图像分类算法.根据生物免疫网络基本原理构建了人工免疫网络模型,利用非线性核函数将高光谱训练样本映射到高维空间,完善了人工免疫网络中目标样本核空间相似性分选方法,降低了人工免疫网络识别样本所需的抗体数量,提升了算法的分类精度和运算效率.为了验证算法的有效性,利用两组高光谱遥感数据将多种高光谱分类方法进行了对比实验.实验表明该算法分类精度和算法运算时间上都有较大改善,是一种分类精度更高、运算速度更快的改进型基于人工免疫网络的高光谱遥感图像分类新方法.  相似文献   

17.
齐永锋  马中玉 《激光技术》2019,43(4):448-452
为了提高高光谱遥感图像的分类精度, 通过结合像元邻域谱与概率协同表示方法, 提出了一种基于空间信息与光谱信息的分类方法。首先采用插值方法生成像元的邻域谱, 然后用概率协同表示方法将待测样本进行分类。用所提出的方法在AVIRIS Indian Pines和Salinas scene高光谱遥感数据库上进行分类实验, 并和主成分分析、支持向量机、稀疏表示分类器和协同表示分类器方法进行了比较。结果表明, 所提出的方法在AVIRIS Indian Pines数据库上识别精度比主成分分析法高约17%, 其识别精度和kappa系数都优于另外4种方法。该方法是一种较好的高光谱遥感图像分类方法。  相似文献   

18.
张因国  陶于祥  罗小波  刘明皓 《红外技术》2020,42(12):1185-1191
为了减少高光谱图像中的冗余以及进一步挖掘潜在的分类信息,本文提出了一种基于特征重要性的卷积神经网络(convolutional neural networks,CNN)分类模型。首先,利用贝叶斯优化训练得到的随机森林模型(random forest,RF)对高光谱遥感图像进行特征重要性评估;其次,依据评估结果选择合适数目的高光谱图像波段,以作为新的训练样本;最后,利用三维卷积神经网络对所得样本进行特征提取并分类。基于两个实测的高光谱遥感图像数据,实验结果均表明:相比原始光谱信息直接采用支持向量机(support vector machine,SVM)和卷积神经网络的分类效果,本文所提基于特征重要性的高光谱分类模型能够在降维的同时有效提高高光谱图像的分类精度。  相似文献   

19.
范超 《国外电子元器件》2014,(1):149-152,155
与传统多光谱遥感图像相比,高光谱图像是在一定波段范围内窄波段成像的,提供了丰富的光谱信息,拓展了遥感技术的应用范围,但同时存在数据含量大、波段间相关性高等问题,在进行处理时需要对高光谱图像进行降维。通过分析现有高光谱波段选择方法 ,本文提出了一种基于信息论准则的高光谱波段选择方法 ,结合波段信息熵与波段间的相关性,采用粒子群优化算法(PSO)进行波段优选,克服了采用单一使用信息量为适应度的片面性。最后使用AVIRIS图像对提出的算法进行试验,并利用支持向量机分类方法进行分类验证,总体分类精度达到91.0%。  相似文献   

20.
In this paper, we propose an analysis on the joint effect of hyperspectral and light detection and ranging (LIDAR) data for the classification of complex forest areas. In greater detail, we present: 1) an advanced system for the joint use of hyperspectral and LIDAR data in complex classification problems; 2) an investigation on the effectiveness of the very promising support vector machines (SVMs) and Gaussian maximum likelihood with leave-one-out-covariance algorithm classifiers for the analysis of complex forest scenarios characterized from a high number of species in a multisource framework; and 3) an analysis on the effectiveness of different LIDAR returns and channels (elevation and intensity) for increasing the classification accuracy obtained with hyperspectral images, particularly in relation to the discrimination of very similar classes. Several experiments carried out on a complex forest area in Italy provide interesting conclusions on the effectiveness and potentialities of the joint use of hyperspectral and LIDAR data and on the accuracy of the different classification techniques analyzed in the proposed system. In particular, the elevation channel of the first LIDAR return was very effective for the separation of species with similar spectral signatures but different mean heights, and the SVM classifier proved to be very robust and accurate in the exploitation of the considered multisource data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号