首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
邹金龙  罗玉峰  肖宗湖  胡云  饶森林  刘绍欢 《材料导报》2018,32(15):2542-2554, 2570
钙钛矿太阳能电池(PSCs)转换效率已从2009年的3.8%上升到2017年的22.7%,其快速的发展可能使光伏工业进入革命新阶段。空穴传输材料(HTM)是构成高效钙钛矿太阳能电池的重要组成部分,开发和设计导电性好、成本低、稳定性好的空穴传输层材料对钙钛矿太阳能电池的研究显得非常重要。本文将近几年应用于钙钛矿太阳能电池中较高效的空穴传输材料归纳为有机小分子类、有机聚合物类和无机材料类,同时也介绍了无空穴传输层的钙钛矿电池。详细评述了基于各类空穴传输材料的钙钛矿太阳能电池的光电性能及稳定性,重点讨论了HOMO能级、空穴迁移率、添加剂的掺杂等因素对钙钛矿太阳能电池的影响。最后指出了空穴传输材料未来的研究重点和发展趋势。  相似文献   

3.
Optoelectronic devices based on metal halide perovskites, including solar cells and light‐emitting diodes, have attracted tremendous research attention globally in the last decade. Due to their potential to achieve high carrier mobilities, organic–inorganic hybrid perovskite materials can enable high‐performance, solution‐processed field‐effect transistors (FETs) for next‐generation, low‐cost, flexible electronic circuits and displays. However, the performance of perovskite FETs is hampered predominantly by device instabilities, whose origin remains poorly understood. Here, perovskite single‐crystal FETs based on methylammonium lead bromide are studied and device instabilities due to electrochemical reactions at the interface between the perovskite and gold source–drain top contacts are investigated. Despite forming the contacts by a gentle, soft lamination method, evidence is found that even at such “ideal” interfaces, a defective, intermixed layer is formed at the interface upon biasing of the device. Using a bottom‐contact, bottom‐gate architecture, it is shown that it is possible to minimize such a reaction through a chemical modification of the electrodes, and this enables fabrication of perovskite single‐crystal FETs with high mobility of up to ≈15 cm2 V?1 s?1 at 80 K. This work addresses one of the key challenges toward the realization of high‐performance solution‐processed perovskite FETs.  相似文献   

4.
非正分钙钛矿锰氧化物(La0.8 Sr0.2)1-xMnO3的电磁特性   总被引:3,自引:0,他引:3  
报道了A位缺位的钙钛矿锰氧化物(La0.8Sr0.2)1-xMnO3(0≤x≤0.30)多晶样品的相结构、磁性和磁电阻效应.实验表明,当x≥0.20时,化合物主要由磁性钙钛矿相和非磁性Mn3O4相所组成.它们的电阻率随温度的变化曲线均具有双峰特征,高温侧的电阻率峰出现在钙钛矿相的居里温度附近,低温侧的电阻率宽峰则是金属导电性的钙钛矿晶粒和高电阻率的半导体或绝缘体导电性的晶界或相界共同作用的结果.样品的零场电阻率ρ0随着A位缺位量x的增大而增大.适当改变x值,可以改善磁电阻比的温度稳定性.当x=0.30时,化合物磁电阻比MR在一个相对宽的温度范围内(175~328K)基本上保持不变,即MR=(9.1±0.5)%.  相似文献   

5.
6.
Polyvinyl pyrrolidone (PVP) is doped to PbI2 and organic salt during two-step growth of halideperovskite. It is observed that PVP molecules can interact with both PbI2 and organic salt, reduce the aggregation and crystallization of the two, and then slow down the coarsening rate of perovskite. As doping concentration increases from 0 to 1 mM in organic salt, average crystallite size of perovskite decreases monotonously from 90 to 34 nm; Surface fluctuation reduces from 259.9 to 179.8 nm at first, and then increases; Similarly, surface roughness decreases from 45.55 to 26.64 nm at first, and then rises. Accordingly, a kind of “confinement effect” is resolved to crystallite growth and surface fluctuation/roughness, which helps to build compact and uniform perovskite film. Density of trap states (t-DOS) is cut down by ≈60% at moderate doping  (0.2 mM). Due to the “confinement effect”, power conversion efficiency of perovskite solar cells is improved from 19.46 (±2.80) % to 21.50 (±0.99) %, and further improved to 24.11% after surface modification. Meanwhile, “confinement effect” strengthens crystallite/grain boundaries and improves thermal stability of both film and device. T80 of device increases to 120 h, compared to 50 h for reference ones.  相似文献   

7.
钙钛矿太阳能电池具有工艺简单、可弯曲、应用前景广阔等优点。从2009年出现起,至今其效率从3.8%提高到了22%以上,引起了研究者的广泛关注。介绍了钙钛矿太阳能电池的基本结构和工作原理,概述了钙钛矿太阳能电池空穴传输材料的研究进展,着重介绍了无机空穴传输材料的研究进展。最后展望了钙钛矿太阳能电池未来的发展与商业化应用。  相似文献   

8.
9.
为了使钙钛矿太阳能电池在高温退火后能够保持稳定, 本研究通过电化学方法制备出氧化锌/氧化石墨烯纳米粒子, 并将其运用到钙钛矿太阳能电池中作为电子传输层使用。通过原位掠入射X射线衍射(GIXRD)、X射线衍射(XRD)、扫描电子显微镜(SEM)和紫外-可见吸收光谱(UV-Vis)等方法对沉积在氧化锌和氧化锌/氧化石墨烯纳米材料上面的甲胺铅碘的结构、形貌以及电池性能变化进行分析测试。结果表明: 氧化锌/氧化石墨烯对于甲胺铅碘有保护作用, 沉积在氧化锌/氧化石墨烯上面的甲胺铅碘薄膜稳定性更高, 电池性能更加稳定, 为将来大面积应用提供了一定的指导。  相似文献   

10.
彭小圣  林赫  上官文峰  黄震 《功能材料》2006,37(10):1677-1680
采用简单方便的方法制备了钙钛矿型催化剂La0.8K0.2Cu0.05Mn0.95O3,用程序升温反应的方法评价催化剂同时去除NOx和碳烟的性能,利用XRD、BET和SEM研究煅烧温度对其结构的影响,进而从物理角度分析催化剂性能的影响因素.结果表明,随着煅烧温度的升高,催化剂的晶型更加完美,比表面积和平均孔径都下降,内部的微孔逐渐减少.结合程序升温反应可知,最有利于同时催化去除NOx和碳烟的催化剂的平均孔径为17nm左右.  相似文献   

11.
Heterojunction interfaces in perovskite solar cells play an important role in enhancing their photoelectric properties and stability.Till date,the precise lattice arrangement at TiO2/CH3NH3PbI3 heterojunction interfaces has not been investigated clearly.Here,we examined a TiO2/CH3NH3PbI3 interface and found that a heavy atomic layer exists in such interfaces,which is attributed to the vacancies of methylammonium (MA) cation groups.Further,first-principles calculation results suggested that an MA cation-deficient surface structure is beneficial for a strong heterogeneous binding between TiO2 and CH3NH3PbI3 to enhance the interface stability.Our research is helpful for further understanding the detailed interface atom arrangements and provides references for interfacial modification in perovskite solar cells.  相似文献   

12.
Inorganic halide perovskite quantum dots (IHPQDs) have recently emerged as a new class of optoelectronic nanomaterials that can outperform the existing hybrid organometallic halide perovskite (OHP), II–VI and III–V groups semiconductor nanocrystals, mainly due to their relatively high stability, excellent photophysical properties, and promising applications in wide‐ranging and diverse fields. In particular, IHPQDs have attracted much recent attention in the field of photoelectrochemistry, with the potential to harness their superb optical and charge transport properties as well as spectacular characteristics of quantum confinement effect for opening up new opportunities in next‐generation photoelectrochemical (PEC) systems. Over the past few years, numerous efforts have been made to design and prepare IHPQD‐based materials for a wide range of applications in photoelectrochemistry, ranging from photocatalytic degradation, photocatalytic CO2 reduction and PEC sensing, to photovoltaic devices. In this review, the recent advances in the development of IHPQD‐based materials are summarized from the standpoint of photoelectrochemistry. The prospects and further developments of IHPQDs in this exciting field are also discussed.  相似文献   

13.
14.
采用传统的高温固相反应法制备了La0.8Sr0.2Mn1-xCoxO3(x = 0, 0.1, 0.3)多晶样品。系统研究了Co掺杂量对La0.8Sr0.2MnO3(LSMO)多晶样品的类Griffiths相、磁熵变、临界行为和电输运性质的影响。研究结果表明: 制备的多晶样品均具有菱形对称结构; 三样品在低温磁转变温度(TC2)以上均存在类Griffiths相; La0.8Sr0.2Mn1-xCoxO3(x = 0, 0.1, 0.3)样品外加磁场为7 T的最大磁熵变ΔSmax分别为-2.28、-2.05和-2.75 J/(kg·K), Co元素的掺杂使得ΔSmax先减小后增大; 母相的临界行为与平均场模型拟合得最好, 掺杂后样品的临界行为和3D海森伯模型拟合最好; 母相为半导体材料, Co元素掺杂量达到0.1时在低温磁转变温度(TC2)附近出现金属绝缘体转变; 高温区三样品的导电方式均满足小极化子模型。  相似文献   

15.
16.
All-inorganic lead halide perovskite nanocrystals (NCs) emerge as a rising star in photovoltaic fields on account of their excellent optoelectronic properties. However, it still remains challenging to further promote photovoltaic efficiency due to the susceptible surface and inevitable vacancies. Here, this work reports a 3D/2D core/shell perovskite heterojunction based on CsPbI3 NCs and its performance in solar cells. The guanidinium (GA+) rich 2D nanoshells can significantly passivate surface trap states and lower the capping ligand density, resulting in improved photoelectric properties and carrier transport and diminished nonradiative recombination centers via the hydrogen bonds from amino groups in GA+ ions. Consequently, an outstanding power conversion efficiency (PCE) of up to 15.53% is realized, substantially higher than the control device (13.77%). This work highlights the importance of surface chemistry and offers a feasible avenue to achieve high-performance perovskite NCs-based optoelectronic devices.  相似文献   

17.
18.
Both conductivity and mobility are essential to charge transfer by carrier transport layers (CTLs) in perovskite solar cells (PSCs). The defects derived from generally used ionic doping method lead to the degradation of carrier mobility and parasite recombinations. In this work, a novel molecular doping of NiOx hole transport layer (HTL) is realized successfully by 2,2′‐(perfluoronaphthalene‐2,6‐diylidene)dimalononitrile (F6TCNNQ). Determined by X‐ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy, the Fermi level (EF) of NiOx HTLs is increased from ?4.63 to ?5.07 eV and valence band maximum (VBM)‐EF declines from 0.58 to 0.29 eV after F6TCNNQ doping. The energy level offset between the VBMs of NiOx and perovskites declines from 0.18 to 0.04 eV. Combining with first‐principle calculations, electrostatic force microscopy is applied for the first time to verify direct electron transfer from NiOx to F6TCNNQ. The average power conversion efficiency of CsFAMA mixed cation PSCs is boosted by ≈8% depending on F6TCNNQ‐doped NiOx HTLs. Strikingly, the champion cell conversion efficiency of CsFAMA mixed cations and MAPbI3‐based devices gets to 20.86% and 19.75%, respectively. Different from passivation effect, the results offer an extremely promising molecular doping method for inorganic CTLs in PSCs. This methodology definitely paves a novel way to modulate the doping in hybrid electronics more than perovskite and organic solar cells.  相似文献   

19.
20.
Perovskite solar cells (PSCs) have attracted great attention in the past few years due to their rapid increase in efficiency and low‐cost fabrication. However, instability against thermal stress and humidity is a big issue hindering their commercialization and practical applications. Here, by combining thermally stable formamidinium–cesium‐based perovskite and a moisture‐resistant carbon electrode, successful fabrication of stable PSCs is reported, which maintain on average 77% of the initial value after being aged for 192 h under conditions of 85 °C and 85% relative humidity (the “double 85” aging condition) without encapsulation. However, the mismatch of energy levels at the interface between the perovskite and the carbon electrode limits charge collection and leads to poor device performance. To address this issue, a thin‐layer of poly(ethylene oxide) (PEO) is introduced to achieve improved interfacial energy level alignment, which is verified by ultraviolet photoemission spectroscopy measurements. Indeed as a result, power conversion efficiency increases from 12.2% to 14.9% after suitable energy level modification by intentionally introducing a thin layer of PEO at the perovskite/carbon interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号