首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高分子3D打印材料和打印工艺   总被引:1,自引:1,他引:1  
3D打印技术亦称为增材制造,是基于三维数学模型数据,通过连续的物理层叠加,逐层增加材料来生成三维实体的技术。3D打印技术与传统材料加工技术相比有许多突出的优势,吸引了国内外工业界、投资界、学术界、新闻媒体和社会公众的热切关注。目前制约3D打印技术发展的因素主要有两个:打印工艺和打印材料。高分子聚合物在3D打印材料中占据主要地位。介绍了当前3D打印常用的高分子材料(热塑性高分子和光敏树脂)和与之相适应的打印工艺(FDM、SLS、SLA、Polyjet等),并对它们的特性和优缺点进行了评述,讨论了这些3D打印材料和工艺的开发面临的问题和挑战。  相似文献   

2.
3D printing (3DP) has transformed engineering, manufacturing, and the use of advanced materials due to its ability to produce objects from a variety of materials, ranging from soft polymers to rigid ceramics. 3DP offers the advantage of being able to print at a variety of lengths scales; from a few micrometers to many meters. 3DP has the unique ability to produce customized small lots, efficiently. Yet, one crucial industry that has not been able to adequately explore its potential is textile manufacturing. The research in 3DP of textiles has lagged behind other areas primarily due to the difficulty in obtaining some of the unique characteristics of strength, flexibility, etc., of textiles, utilizing a fundamentally different manufacturing technology. Textiles are their own class of materials due to the specific structural developments that occur during the various stages of textile manufacturing: from fiber extrusion to assembly of the fibers to fabrics. Here, the current 3DP technologies are reviewed with emphasis on soft and anisotropic structures, as well as the efforts toward 3DP of textiles. Finally, a potential pathway to 3DP of textiles, dubbed as printing with fibers to create textile structures is proposed for further exploration.  相似文献   

3.
The synergistic integration of nanomaterials with 3D printing technologies can enable the creation of architecture and devices with an unprecedented level of functional integration. In particular, a multiscale 3D printing approach can seamlessly interweave nanomaterials with diverse classes of materials to impart, program, or modulate a wide range of functional properties in an otherwise passive 3D printed object. However, achieving such multiscale integration is challenging as it requires the ability to pattern, organize, or assemble nanomaterials in a 3D printing process. This review highlights the latest advances in the integration of nanomaterials with 3D printing, achieved by leveraging mechanical, electrical, magnetic, optical, or thermal phenomena. Ultimately, it is envisioned that such approaches can enable the creation of multifunctional constructs and devices that cannot be fabricated with conventional manufacturing approaches.  相似文献   

4.
5.
6.
With the FDA approval of the first 3D printed tablet, Spritam®, there is now precedence set for the utilization of 3D printing for the preparation of drug delivery systems. The capabilities for dispensing low volumes with accuracy, precise spatial control and layer-by-layer assembly allow for the preparation of complex compositions and geometries. The high degree of flexibility and control with 3D printing enables the preparation of dosage forms with multiple active pharmaceutical ingredients with complex and tailored release profiles. A unique opportunity for this technology for the preparation of personalized doses to address individual patient needs. This review will highlight the 3D printing technologies being utilized for the fabrication of drug delivery systems, as well as the formulation and processing parameters for consideration. This article will also summarize the range of dosage forms that have been prepared using these technologies, specifically over the last 10 years.  相似文献   

7.
8.
9.
10.
张贤富 《包装工程》2018,39(12):180-185
目的研究3D打印技术对传统的首饰个性化定制产业各个具体环节、过程的重塑,以此指导个性化定制首饰设计开发。方法通过对3D打印技术在首饰行业的应用介绍,并与传统的首饰个性化定制过程全面对比,讨论3D打印技术对首饰个性化定制产业在用户需求、设计环节、制作过程、销售环节、售后服务等各个环节的重塑。分析在3D打印技术下,个性化定制首饰开发的各环节的变化特点,尤其是对设计和制作环节的影响,来指导个性化定制首饰的设计开发。结论通过与传统首饰个性化定制全过程的对比阐述,理清了在新技术条件下,个性化首饰定制开发的特点和转变,助力产品开发和行业发展。  相似文献   

11.
12.
13.
3D打印技术研究现状和关键技术EI北大核心CSCD   总被引:10,自引:0,他引:10  
本文首先简要介绍了3D打印技术的基本原理及分类,然后重点介绍了有关金属材料3D打印的几种方法:电子束熔化成形(EBM)、激光选区熔化成形(SLM)、激光快速成形技术(LDMD)。简述了金属材料3D打印的应用领域及国内外发展情况及研究现状。文章最后结合国内外金属材料3D打印的研究现状,指出金属材料3D打印需要在打印用粉末、金属3D打印设备、3D打印零件无损检测方法、3D打印零件的失效行为和寿命预测等方面进行重点研究,并建立3D打印零件的无损检测标准规范以及3D打印材料全面力学性能数据库。  相似文献   

14.
Hybrid 3D printing is a new method for producing soft electronics that combines direct ink writing of conductive and dielectric elastomeric materials with automated pick‐and‐place of surface mount electronic components within an integrated additive manufacturing platform. Using this approach, insulating matrix and conductive electrode inks are directly printed in specific layouts. Passive and active electrical components are then integrated to produce the desired electronic circuitry by using an empty nozzle (in vacuum‐on mode) to pick up individual components, place them onto the substrate, and then deposit them (in vacuum‐off mode) in the desired location. The components are then interconnected via printed conductive traces to yield soft electronic devices that may find potential application in wearable electronics, soft robotics, and biomedical devices.  相似文献   

15.
Humans possess manual dexterity, motor skills, and other physical abilities that rely on feedback provided by the somatosensory system. Herein, a method is reported for creating soft somatosensitive actuators (SSAs) via embedded 3D printing, which are innervated with multiple conductive features that simultaneously enable haptic, proprioceptive, and thermoceptive sensing. This novel manufacturing approach enables the seamless integration of multiple ionically conductive and fluidic features within elastomeric matrices to produce SSAs with the desired bioinspired sensing and actuation capabilities. Each printed sensor is composed of an ionically conductive gel that exhibits both long‐term stability and hysteresis‐free performance. As an exemplar, multiple SSAs are combined into a soft robotic gripper that provides proprioceptive and haptic feedback via embedded curvature, inflation, and contact sensors, including deep and fine touch contact sensors. The multimaterial manufacturing platform enables complex sensing motifs to be easily integrated into soft actuating systems, which is a necessary step toward closed‐loop feedback control of soft robots, machines, and haptic devices.  相似文献   

16.
3D打印技术提供了一种先进的制造方法,实现了从3D计算机模型出发直接制造复杂形状的工件。其中,金属3D打印技术在生物医疗、航空航天、自动化、汽车零部件、军工等领域的有效应用得到了印证。介绍了金属3D打印技术的基本情况和金属3D打印专用金属粉末特征,简述了金属粉末的分类及应用,并对金属3D打印技术存在的问题和面临的挑战与机遇进行了分析。  相似文献   

17.
18.
19.
Among the various electrohydrodynamic (EHD) processing techniques, electrowriting (EW) produces the most complex 3D structures. Aqueous solution EW similarly retains the potential for additive manufacturing well-resolved 3D structures, while providing new opportunities for processing biologically derived polymers and eschewing organic solvents. However, research on aqueous-based EHD processing is still limited. To summarize the field and advocate for increased use of aqueous bio-based materials, this review summarizes the most significant contributions of aqueous solution processing. Special emphasis has been placed on understanding the effects of different printing parameters, the prospects for 3D processing new materials, and future challenges.  相似文献   

20.
侯利业 《包装工程》2019,40(14):41-44
目的 给处于发展瓶颈中的工业产品企业和传统工艺作坊,提供产品形态创新发展的思路。方法 以部分行业领域的3D打印创新作品为例,通过对案例中的3D打印技术创新进行介绍与其社会价值进行分析,得出3D打印工业产品形态的主体框架一体化趋势、产品形态轻量化趋势和产品造型多样化趋势。 结论 未来的定制化3D打印工业产品,将会呈现出更多个性化的形态,对于处于发展瓶颈的工业产品企业与传统手工艺作坊来说,需要用互联网思维认识和思考3D打印技术对产品形态的影响,结合民生需求,通过3D打印技术创新,赋予产品更多的形态可能,从而焕发新生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号