首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of a compatibilizer on the properties of corn starch‐reinforced metallocene polyethylene–octene elastomer (POE) blends was studied. The compatibility between POE and starch was improved markedly with an acrylic acid‐grafted POE (POE‐g‐AA) copolymer as a compatibilizer. Fourier transform infrared spectroscopy, X‐ray diffraction spectroscopy, differential scanning calorimetry, and scanning electron microscopy were used to examine the blends produced. The size of the starch phase increased with an increasing content of starch for noncompatibilized and compatibilized blends. The POE/starch blends compatibilized with the POE‐g‐AA copolymer lowered the size of the starch phase and had a fine dispersion and homogeneity of starch in the POE matrix. This better dispersion was due to the formation of branched and crosslinked macromolecules because the POE‐g‐AA copolymer had anhydride groups to react with the hydroxyls. This was reflected in the mechanical properties of the blends, especially the tensile strength at break. In a comparison with pure POE, the decrease in the tensile strength was slight for compatibilized blends containing up to 40 wt % starch. The POE‐g‐AA copolymer was an effective compatibilizer because only a small amount was required to improve the mechanical properties of POE/starch blends. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1792–1798, 2002  相似文献   

2.
In the present study, the properties of polycaprolactone (PCL) and wood flour (WF) blends were examined by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), Instron mechanical tester, and scanning electron microscopy (SEM). As for results, the mechanical properties of PCL were lowered obviously, due to the poor compatibility between the two phases, when it was blended with wood flours. A fine dispersion and homogeneity of wood flour in the polymer matrix could be obtained when the acrylic acid grafted PCL (PCL‐g‐AA) was used to replace PCL for manufacture of blends. This better dispersion is due to the formation of branched and crosslinked macromolecules since the PCL‐g‐AA copolymer had carboxyl groups to react with the hydroxyls. This is reflected in the mechanical and thermal properties of the blends. In comparison with pure PCL/WF blend, the increase in tensile strength at break was remarkable for PCL‐g‐AA/WF blend. The PCL‐g‐AA/WF blends are more easily processed than the PCL/WF ones since the former had lower melt viscosity than the latter. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1000–1006, 2004  相似文献   

3.
The aim of this study was to improve the toughness of recycled poly(ethylene terephthalate) (PET)/glass fiber (GF) blends through the addition of ethylene–butyl acrylate–glycidyl methacrylate copolymer (EBAGMA) and maleic anhydride grafted polyethylene–octene (POE‐g‐MAH) individually. The morphology and mechanical properties of the ternary blend were also examined in this study. EBAGMA was more effective in toughening recycled PET/GF blends than POE‐g‐MAH; this resulted from its better compatibility with PET and stronger fiber/matrix bonding, as indicated by scanning electron microscopy images. The PET/GF/EBAGMA ternary blend had improved impact strength and well‐balanced mechanical properties at a loading of 8 wt % EBAGMA. The addition of POE‐g‐MAH weakened the fiber/matrix bonding due to more POE‐g‐MAH coated on the GF, which led to weakened impact strength, tensile strength, and flexural modulus. According to dynamic rheometer testing, the use of both EBAGMA and POE‐g‐MAH remarkably increased the melt storage modulus and dynamic viscosity. Differential scanning calorimetry analysis showed that the addition of EBAGMA lowered the crystallization rate of the PET/GF blend, whereas POE‐g‐MAH increased it. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
A series of blends of polypropylene (PP)–polyamide‐6 (PA6) with either reactive polyethylene–octene elastomer (POE) grafted with maleic anhydride (POE‐g‐MA) or with maleated PP (PP‐g‐MA) as compatibilizers were prepared. The microstructures and mechanical properties of the blends were investigated by means of tensile and impact testing and by scanning electron microscopy and transmission electron microscopy. The results indicated that the miscibility of PP–PA6 blends was improved with the addition of POE‐g‐MA and PP‐g‐MA. For the PP/PA6/POE‐g‐MA system, an elastic interfacial POE layer was formed around PA6 particles and the dispersed POE phases were also observed in the PP matrix. Its Izod impact strength was four times that of pure PP matrix, whilst the tensile strength and Young's modulus were almost unchanged. The greatest tensile strength was obtained for PP/PA6/PP‐g‐MA blend, but its Izod impact strength was reduced in comparison with the pure PP matrix. © 2002 Society of Chemical Industry  相似文献   

5.
Multiwalled carbon nanotubes (MWNTs) with acyl chloride functional groups and a metallocene polyethylene–octene elastomer (POE) or an acrylic acid‐grafted metallocene polyethylene–octene elastomer (POE‐g‐AA) were used to prepare hybrids (POE/MWNTs or POE‐g‐AA/MWNTs) using a melting method, with a view to identify a hybrid with improved thermal properties. Hybrids were characterized using Fourier transform infrared spectroscopy, 13C solid‐state nuclear magnetic resonance, X‐ray diffraction, thermogravimetry analysis, and scanning electron microscopy. MWNTs were purified using acid treatment, and results showed that ? COOH of MWNTs increased with acid treatment time and leveled off after 24‐h treatment. Much better dispersion and homogeneity of MWNTs was obtained with POE‐g‐AA in place of POE as the matrix. As a result, tensile strength at break of POE‐g‐AA/MWNTs was significantly improved even at 5 wt % MWNT content. Moreover, temperature of thermal decomposition for POE‐g‐AA/MWNTs was about 40–50°C higher than that for POE‐g‐AA, indicating higher thermal stability. This was because the carboxylic acid groups in POE‐g‐AA and the acyl chloride functional sites in MWNTs allow the formation of stronger chemical bonds. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1328–1337, 2007  相似文献   

6.
Ternary blends of polyoxymethylene (POM), polyolefin elastomer (POE), and glycidyl methacrylate grafted high density polyethylene (GMA‐g‐HDPE) with various component ratios were studied for their mechanical and thermal properties. The size of POE dispersed phase increased with increasing the elastomer content due to the observed agglomeration. The notched impact strength demonstrated a parabolic tendency with increasing the elastomer content and reached the peak value of 10.81 kJ/m2 when the elastomer addition was 7.5 wt%. The disappearance of epoxy functional groups in the POM/POE/GMA‐g‐HDPE blends indicated that GMA‐g‐HDPE reacted with the terminal hydroxyl groups of POM and formed a new graft copolymer. Higher thermal stability was observed in the modified POM. Both storage modulus and loss modulus decreased from dynamic mechanical analysis tests while the loss factor increased with increasing the elastomer content. GMA‐g‐HDPE showed good compatibility between the POM matrix and the POE dispersed phase due to the reactive compatibilization of the epoxy groups of GMA and the terminal hydroxyl groups of POM. A POM/POE blend without compatibilizer was researched for comparison, it was found that the properties of P‐7.5(POM/POE 92.5 wt%/7.5 wt%) were worse than those of the blend with the GMA‐g‐HDPE compatibilizer. POLYM. ENG. SCI., 57:1119–1126, 2017. © 2017 Society of Plastics Engineers  相似文献   

7.
Five fungi including Aspergillus niger, Penicilium pinophilum, Chaetoomium globsum, Gliocladium virens and Aureobasium pullulans were used to investigate the biodegradation of starch‐based elastomers: polyethylene‐octene elastomer (POE)/starch and grafted POE‐g‐MAH/starch copolymer blends. The viability of the composite spore suspensions were measured before estimating the fungal growth on the surface of specimens. The weight loss, morphology and mechanical properties of the blended specimens were measured using scanning electron microscopy and a mechanical properties tester after 28 days of culturing. The spore suspension in the experiment showed good viability. Pure POE and POE‐g‐MAH did not allow significant fungal growth. Pure POE did not lose weight or have a change in tensile strength, but pure POE‐g‐MAH lost about 0.07% of its weight with a slight reduction in tensile strength during culture period. There was heavy growth on the surface of POE/starch and POE‐g‐MAH/starch blends after 28 days of culturing. The weight loss of POE/starch and POE‐g‐MAH/starch blends increased with increasing starch content. POE‐g‐MAH/starch blends tended to lose more weight than POE/starch blends. After biodegradation, the surface of POE/starch and POE‐g‐MAH/starch blends became rough with many holes and cracks, indicating that the films were eroded by the fungi. Tensile strength of POE/starch and POE‐g‐MAH/starch blends decreased after culturing because of microbial attack. On the contrary, elongation at break of POE‐g‐MAH/starch blends increased after biodegradation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci 114:3574–3584, 2009  相似文献   

8.
The aim of this work is the production of new nanocomposites from metallocene polyethylene‐octene elastomer (POE), montmorillonite and biodegradable starch by means of a melt blending method. Characterizations of clay, modified clay, POE, POE‐g‐AA, and the hybrids produced from polymer, clay, and/or starch were performed by X‐ray diffraction (XRD) spectroscopy, Fourier transform infrared (FTIR) spectrophotometer, differential scanning calorimetry (DSC), thermogravimetry analyzer (TGA), scanning electron microscope (SEM), and Instron mechanical tester. As to the results, organophilic clay can be well dispersed into acrylic acid grafted polyethylene‐octene elastomer (POE‐g‐AA) in nanoscale sizes since cetyl pyridium chloride is partially compatible with POE‐g‐AA and allows POE‐g‐AA chains to intercalate into clay layers. Based on consideration of thermal and mechanical properties, it is also found that 12 wt % of clay content is optimal for preparation of POE‐g‐AA/clay nanocomposites. The new partly biodegradable POE‐g‐AA/clay/starch hybrid could obviously improve the elongation and the tensile strength at break of the POE‐g‐AA/starch hybrid since the former can give the smaller starch phase size and nanoscale dispersion of silicate layers in the polymer matrix. The nanocomposites produced from our laboratory can provide a stable tensile strength at break when the starch content is up to 40 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 397–404, 2005  相似文献   

9.
Elastomer ethylene–butylacrylate–glycidyl methacrylate (PTW) containing epoxy groups were chosen as toughening modifier for poly(butylene terephthalate) (PBT)/polyolefin elastomer (POE) blend. The morphology, thermal, and mechanical properties of the PBT/POE/PTW blend were studied. The infrared spectra of the blends proved that small parts of epoxy groups of PTW reacted with carboxylic acid or hydroxyl groups in PBT during melt blending, resulting in a grafted structure which tended to increase the viscosity and interfere with the crystallization process of the blend. The morphology observed by scanning electron microscopy revealed the dispersed POE particles were well distributed and the interaction between POE and PBT increased in the PBT/POE/PTW blends. Mechanical properties showed the addition of PTW could lead to a remarkable increase about 10‐times in impact strength with a small reduction in tensile strength of PBT/POE blends. Differential scanning calorimetry results showed with increasing PTW, the crystallization temperature (Tc) and crystallinity (Xc) decreased while the melting point (Tm) slightly increased. Dynamic mechanical thermal analysis spectra indicated that the presence of PTW could improve the compatibility of PBT/POE blends. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40660.  相似文献   

10.
With the increasing ratio of waste tire powder (WTP) to low‐density polyethylene (LDPE), the hardness and tensile strength of the WTP/LDPE blends decreased while the elongation at break increased. Five kinds of compatibilizers, such as maleic anhydride‐grafted polyethylene (PE‐g‐MA), maleic anhydride‐grafted ethylene‐octene copolymer (POE‐g‐MA), maleic anhydride‐grafted linear LDPE, maleic anhydride‐grafted ethylene vinyl‐acetate copolymer, and maleic anhydride‐grafted styrene‐ethylene‐butylene‐styrene, were incorporated to prepare WTP/LDPE blends, respectively. PE‐g‐MA and POE‐g‐MA reinforced the tensile stress and toughness of the blends. The toughness value of POE‐g‐MA incorporating blends was the highest, reached to 2032.3 MJ/m3, while that of the control was only 1402.9 MJ/m3. Therefore, POE‐g‐MA was selected as asphalt modifier. The toughness value reached to the highest level when the content of POE‐g‐MA was about 8%. Besides that the softening point of the modified asphalt would be higher than 60°C, whereas the content of WTP/LDPE blend was more than 5%, and the blends were mixed by stirring under the shearing speed of 3000 rpm for 20 min. Especially, when the blend content was 8.5%, the softening point arrived at 82°C, contributing to asphalt strength and elastic properties in a wide range of temperature. In addition, the swelling property of POE‐g‐MA/WTP/LDPE blend was better than that of the other compalibitizers, which indicated that POE‐g‐MA /WTP/LDPE blend was much compatible with asphalt. Also, the excellent compatibility would result in the good mechanical and processing properties of the modified asphalt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
Polypropylene (PP) and acrylonitrile–butadiene–styrene blends of different composition were prepared using a single‐screw extruder. The binary blend of PP/ABS was observed to be incompatible and shows poor mechanical properties. PP‐g‐2‐hydroxyethyl methacrylate (2‐HEMA) was used as a compatibilizer for the PP/ABS blends. The ternary compatibilized blends of PP/ABS/PP‐g‐2‐HEMA showed improvement in the mechanical properties. Electron micrographs of these blends showed a homogeneous and finer distribution of the dispersed phase. The mechanical performance increased particularly in the PP‐rich blend. The 2.5‐phr (part per hundred of resin) compatibilizer was observed to bring improvement to the properties. The suitability of various existing theoretical models for the predication of the tensile moduli of these blends was examined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 72–78, 2003  相似文献   

12.
Ternary blends of polypropylene (PP), a polypropylene‐grafted acrylic acid copolymer (PP‐g‐AA), and an ethylene–acrylic acid copolymer (EAA) were prepared by melt blending. The surfaces of films with different contents of these three components were characterized with contact‐angle measurements. Scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis were used to characterize the microstructure, melting and crystalline behavior, and thermal stability of the blends. The contact angles of the PP/PP‐g‐AA blends decreased monotonically with increasing PP‐g‐AA content. With the incorporation of EAA, the contact angles of the PP/PP‐g‐AA/EAA ternary blends decreased with increasing EAA content. When the concentration of EAA was higher than 15 wt %, the contact angles of the ternary blends began to increase. Scanning electron microscopy observations confirmed that PP‐g‐AA acted as a compatibilizer and improved the compatibility between PP and EAA in the ternary blends. Differential scanning calorimetry analysis suggested that acrylic acid moieties could act as nucleating agents for PP in the polymer blends. Thermogravimetric analysis and differential thermogravimetry confirmed the optimal blend ratio for the PP/PP‐g‐AA/EAA ternary blends was 70/15/15. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 436–442, 2006  相似文献   

13.
In this study, tetraethoxysilane (TEOS) and a metallocene polyethylene–octene elastomer (POE) were chosen as the ceramic precursor and the continuous phase, respectively, for the preparation of new hybrids by an in situ sol–gel process. To obtain a better hybrid, a maleic anhydride‐grafted polyethylene–octene elastomer (POE‐g‐MAH), used as the continuous phase, was also investigated. Characterizations of POE‐g‐MAH/SiO2 and POE/SiO2 hybrids were performed by Fourier transform infrared (FTIR) and 29Si solid‐state nuclear magnetic resonance (NMR) spectrometers, a differential scanning calorimeter (DSC), a thermogravimetry analyzer, and an Instron mechanical tester. The results showed that the POE‐g‐MAH/SiO2 hybrid could improve the properties of the POE/SiO2 hybrid because the interfacial force between the polymer matrix and the silica network was changed from hydrogen bonds into covalent Si? O? C bonds through dehydration of hydroxy groups in POE‐g‐MAH with residual silanol groups in the silica network. The existence of covalent Si? O? C bonds was proved by FTIR spectra. For the POE/SiO2 and POE‐g‐MAH/SiO2 hybrids, maximum values of the tensile strength and the glass transition temperature were found at 9 wt % SiO2 since a limited content of silica might be linked with the polymer chains through the covalent bond. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 966–972, 2003  相似文献   

14.
In this work, ethylene‐co‐vinyl acetate (EVA), poly(ethylene‐co‐octene) (POE), and poly(vinyl chloride) (PVC) blends were processed in a molten state process using a corotating twin‐screw extruder to assess both the balance of mechanical properties and physical interactions in the melt state. Tensile measurements, scanning electron microscopy, and oscillatory rheometry were performed. By means of flow curves, the parameters of the power law as well as the distribution of relaxation times were assessed with the aid of a nonlinear regularization method. The mechanical properties for the EVA‐POE blend approximated the values for POE, while inclusion of PVC shifted the modulus values to those of neat EVA. The rise in modulus was corroborated by the PVC phase dispersion as solid particles that act as a reinforcement for the ternary blend. The rheological properties in the molten state show that the POE does not present molecular entanglement effects and so tends both to diminish the EVA mechanical properties and increase the fluidity of the blend. However, the addition of PVC both restored the EVA typical pseudoplastic feature and promoted the increase in the viscosity and the mechanical properties of the ternary blend. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

15.
Herein, a simple melt-blending method is utilized to disperse of halloysite nanotubes (HNTs) in polystyrene/polyolefin elastomer (PS/POE) blends. Based on morphological studies, the PS/POE/HNT nanocomposite containing up to 3 phr HNTs shows excellent nanofiller dispersion, while those filled with 5 phr HNTs exhibit nanofiller aggregation. To overcome the nanofiller aggregation issue, the polypropylene-grafted-maleic anhydride (PP-g-MA) compatibilizer is added to the PS/POE/HNT nanocomposite, which results in improved mechanical properties for the nanocomposite sheets. Furthermore, the addition of compatibilized HNTs to the PS/POE blends leads to decreased O2 and N2 gas permeabilities. Besides, incorporating POE, HNTs, and PP-g-MA leads to a decrease in water vapor transmission of PS. In the end, the experimentally-determined mechanical properties and gas permeabilities of the nanocomposite sheets are compared to those predicted by prevalent theoretical models, revealing a good agreement between the experimental and theoretical results. Molecular-dynamics simulations are also carried out to calculate the gas diffusion coefficients in the different sheets to further support the experimental findings in this study. Overall, the PS/POE/HNT/PP-g-MA nanocomposite sheets fabricated in this work demonstrate excellent mechanical and gas barrier properties; and hence, can be used as candidate packaging materials. However, the strength of the resulting PS/POE blend may be inferior to that of the virgin PS.  相似文献   

16.
The comparison of the mechanical properties between poly(propylene)/ethylene‐propylene‐diene monomer elastomer (PP/EPDM) and poly(propylene)/maleic anhydride‐g‐ethylene‐propylene‐diene monomer [PP/MEPDM (MAH‐g‐EPDM)] showed that the latter blend has noticeably higher Izod impact strength but lower Young's modulus than the former one. Phase morphology of the two blends was examined by dynamic mechanical thermal analysis, indicating that the miscibility of PP/MEPDM was inferior to PP/EPDM. The poor miscibility of PP/MEPDM degrades the nucleation effectiveness of the elastomer on PP. The observations of the impact fracture mode of the two blends and the dispersion state of the elastomers, determined by scanning electron microscopy, showed that PP/EPDM fractured in a brittle mode, whereas PP/MEPDM in a ductile one, and that a finer dispersion of MEPDM was found in the blend PP/MEPDM. These observations indicate that the difference in the dispersion state of elastomer between PP/EPDM and PP/MEPDM results in different fracture modes, and thereby affects the toughness of the two blends. The finer dispersion of MEPDM in the blend of PP/MEPDM was attributed to the part cross‐linking of MEPDM resulting from the grafting reaction of EPDM with maleic anhydride (MAH) in the presence of dicumyl peroxide (DCP). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2486–2491, 2002  相似文献   

17.
Thermoplasticized starch (TPS) filled poly(lactic acid) (PLA) blends are usually found to have low mechanical properties due to poor properties of TPS and inadequate adhesion between the TPS and PLA. The purpose of this study was to investigate the reinforcing effect of wood fibers (WF) on the mechanical properties of TPS/PLA blends. In order to improve the compatibility of wood with TPS/PLA blends, maleic anhydride grafted PLA (MA‐g‐PLA) copolymer was synthesized and used. TPS, TPS/PLA blends, and WF reinforced TPS/PLA composites were prepared by twin‐screw extrusion and injection molded. Scanning electron microscope and crystallinity studies indicated thermoplasticity in starch. WF at two different weight proportions, that is, 20% and 40% with respect to TPS content were taken and MA‐g‐PLA at 10% to the total weight was chosen to study the effect on mechanical properties. At 20% WF and 10% MA‐g‐PLA, the tensile strength exhibited 86% improvement and flexural strength exhibited about 106% improvement over TPS/PLA blends. Increasing WF content to 40% further enhanced tensile strength by 128% and flexural strength by 180% with respect to TPS/PLA blends. Thermal behavior of blends and composites was analyzed using dynamic mechanical analysis and thermogravimetric analysis. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46118.  相似文献   

18.
The graft copolymerization of 2‐dimethylamino ethylmethacrylate (DMAEMA) onto ethylene propylene diene mononer rubber (EPDM) was carried out in toluene via solution polymerization technique at 70°C, using dibenzoyl peroxide as initiator. The synthesized EPDM rubber grafted with poly[DMAEMA] (EPDM‐g‐PDMAEMA) was characterized with 1H‐NMR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The EPDM‐g‐PDMAEMA was incorporated into EPDM/butadiene acrylonitrile rubber (EPDM/NBR) blend with different blend ratios, where the homogeneity of such blends was examined with scanning electron microscopy and DSC. The scanning electron micrographs illustrate improvement of the morphology of EPDM/NBR rubber blends as a result of incorporation of EPDM‐g‐PDMAEMA onto that blend. The DSC trace exhibits one glass transition temperature (Tg) for EPDM/NBR blend containing EPDM‐g‐PDMAEMA, indicating improvement of homogeneity. The physico‐mechanical properties after and before accelerated thermal aging of the homogeneous, and inhomogeneous EPDM/NBR vulcanizates with different blend ratios were investigated. The physico‐mechanical properties of all blend vulcanizates were improved after and before accelerated thermal aging, in presence of EPDM‐g‐PDMAEMA. Of all blend ratios under investigation EPDM/NBR (75/25) blend possesses the best physico‐mechanical properties together with the best (least) swelling (%) in brake fluid. Swelling behavior of the rubber blend vulcanizates in motor oil and toluene was also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Polystyrene (PS)/polyamide 1212 (PA 1212) blends were compatibilized with a maleated triblock copolymer of styrene–(ethylene‐co‐butene)–styrene (SEBS‐g‐MA). Scanning electron microscopy revealed that the addition of SEBS‐g‐MA was beneficial to the dispersion of PA 1212 in the PS matrix because of the reaction between them. The variation of the fraction of SEBS‐g‐MA in the blends allowed the manipulation of the phase structure, which first formed a sheetlike structure and then formed a cocontinuous phase containing PA 1212/SEBS‐g‐MA core–shell morphologies. As a result, the mechanical properties, especially the Charpy notched impact resistance, were significantly improved with the addition of SEBS‐g‐MA. Differential scanning calorimetry (DSC) data indicated that the strong interaction between SEBS‐g‐MA and PA 1212 in the blends retarded the crystallization of PA 1212. The heat distortion temperature of the compatibilized blends was improved in comparison with that of the unmodified blend, probably because of the apparent increase in the glass‐transition temperature with an increasing concentration of SEBS‐g‐MA. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1354–1360, 2005  相似文献   

20.
Blends of polyamide 12 (PA12) with styrene/ethylene–butylene/styrene (SEBS) and maleic anhydride grafted SEBS (SEBS‐g‐MA) were prepared by twin‐screw extrusion and injection molding. The morphology, mechanical properties, and dynamic mechanical properties of the blends were studied. The morphology of the blends was evaluated from the etched surfaces of cryogenically fractured specimens with scanning electron microscopy. The morphological parameters showed that the PA12/SEBS‐g‐MA blends (PM series) exhibited a finer and more uniform rubber dispersion than the PA12/SEBS blends (PS series) because of the interfacial chemical reactions. SEBS functionalization via maleic anhydride grafting strongly affected the morphological parameters, such as the domain size, interfacial area per unit of volume, and critical interparticle distance, but the distribution of the rubber domains in the blends was less affected. Tensile and impact studies showed that the PS blends had worse mechanical properties than the PM blends. The tensile strength and elongation at break of the PM blends were considerably greater than those of the PS blends. The fracture toughness and energy values determined for notched Charpy specimens in high‐speed impact tests were markedly higher for the PM blends than for the PS blends. A similar observation was obtained from instrumented falling weight impact studies. Dynamic mechanical analysis confirmed the incompatibility of the blend components because the glass‐transition temperatures of PA12 and the rubber phase (SEBS and SEBS‐g‐MA) were not affected. © 2005 Wiley Periodicals, Inc. J Appl polym Sci 95: 1376–1387, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号