首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effective elongational viscosity data on a series of polyolefins as a function of temperature are shifted to a reference temperature using the approach for shifting shearing viscosity data. The temperature shift factors are obtained from complex and capillary shear rheology, and these are the same factors used for shifting the shear rheology. A Carreau rheological model was used to determine the zero shear rate viscosity at different temperatures, and an Arrhenius expression was used to determine the temperature shift factors. The same shift factors are shown to produce separate master curves for shear and elongational rheology at reference temperatures. The commercial grades of polyolefins studied include an extrusion grade of polypropylene and metallocene and conventionally catalyzed low and high density polyethylene materials. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1387–1396, 2003  相似文献   

2.
The elongational viscosities of polyethylenes with different molecular characteristics were measured at different Hencky strains and temperatures with a capillary rheometer by the replacement of the capillary cylindrical die with a hyperbolic converging die. The hyperbolic shape of the die established a purely elongational flow field at a constant elongational strain rate throughout the die. The effects of molecular characteristics such as the molecular weight, molecular weight distribution, and long‐chain branching and processing conditions such as the temperature and Hencky strain on the elongational rheology of the polyethylene samples were studied. Good master curves were generated for temperature and Hencky strain shifting and simultaneous shifting with respect to both the temperature and Hencky strain. Both the molecular weight distribution and long‐chain branching seemed to promote strain rate thinning and reduce the elongational viscosity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1184–1194, 2007  相似文献   

3.
The elongational rheology of solutions of cellulose in the ionic liquid solvent 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) was measured at 80, 90, and 100°C; 8, 10, and 12 wt% cellulose; Hencky strains 5, 6, 7; and strain rates from 1 to 100 s?1. Master curves were generated by shifting the elongational viscosity curves with respect to temperature and Hencky strain. Also, general master curves were generated by simultaneously shifting with respect to both temperatures and Hencky strain. From the Arrhenius plots of the temperature shift factors, the activation energy for elongational flow was determined. The elongational rheology of these solutions was elongational strain rate thinning similar to that of their shear behavior and polymer melts and they were also strain hardening. Both effects and the viscosity increased with cellulose concentration. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
Shear dynamic and elongational rheology of concentrated solutions of cellulose in N‐methylmorpholine oxide monohydrate (lyocell) were investigated at different temperatures and for two Hencky strains. Shear thinning and strain thinning behavior is characteristic for dynamic viscosity and effective elongational viscosity of lyocell solutions. Body forces, enthalpy, and entropy of orientation are high at low temperature and high deformation rates, showing a strong orientation effect. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1369–1377, 2000  相似文献   

5.
介绍了1种测定表观拉伸流动性能的新方法,通过测量不同聚合物的拉伸流动阻力和表观拉伸应变速率,来比较它们的加工流动性能,并就低密度聚乙烯和线型低密度聚乙烯的分子结构和加工流动行为的影响进行了探讨。  相似文献   

6.
Effective elongational viscosities were measured for high‐ and low‐density polyethylene samples using a capillary rheometer fitted with semihyperbolic dies. These dies establish a purely elongational flow field at constant elongational strain rate. The effective elongational viscosities were evaluated under the influence of the process strain rate, Hencky strain, and temperature. Enthalpy and entropy changes associated with the orientation development of semihyperbolic‐processed melts were also estimated. The results showed that elongational viscosities were primarily affected by differences in the weight‐average molecular weight rather than in the degree of branching. This effect was process‐strain‐rate‐ as well as temperature‐dependent. An investigation of the melt‐pressure relaxation and the associated first decay time constants revealed that with increasing strain rate the molecular field of the melt asymptotically gained orientation in approaching a limit. As a result of this behavior, molecular uniqueness became much less distinct at high process strain rates, apparently yielding to orientation development and the associated restructuring of the melt's molecular morphology. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2170–2184, 2001  相似文献   

7.
采用熔融纺丝法研究了低密度聚乙烯(PE-LD)、线形低密度聚乙烯(PE-LLD)和高密度聚乙烯(PE-HD)熔体的拉伸流变性能。结果表明,PE-LD、PE-LLD和PE-HD熔体的熔体强度都随温度的升高而下降;随着拉伸应变速率和温度的升高,PE-LD、PE-LLD和PE-HD熔体的拉伸黏度下降;随着挤出速率的提高,相同应变速率下,PE-LD、PE-LLD和PE-HD熔体的拉伸应力和拉伸黏度都有所降低。  相似文献   

8.
The relevance of polymer melt rheology in film blowing process for linear low‐density polyethylene (LLDPE) and its blends with three different low‐density polyethylenes (LDPEs) has been discussed. The effect of different LDPE components as well as their concentration on shear and elongational viscosity has been investigated. A good correlation has been observed between the extensional rheological parameters of LDPEs measured by different experimental techniques. The molecular structure of parent polymers as well as blend composition play an important role in the rheology of these blends and consequently their performance in the film blowing process. © 2000 Society of Chemical Industry  相似文献   

9.
Compared with conventional polyolefins, ultrahigh molecular weight polyethylene (UHMWPE) possesses outstanding impact strength and crack resistance that make it desirable for a wide variety of applications. Unfortunately, UHMWPE has an ultrahigh viscosity that renders common, continuous melt-state processes ineffective for making UHMWPE products. Attempts to overcome this problem by blending UHMWPE with lower molecular weight high-density polyethylene (HDPE) by melt processing have typically led to poorly dispersed blends due to the vast viscosity mismatch between blend components. Here, we present solid-state shear pulverization (SSSP) as a mild, continuous, and simple approach for achieving effective and intimate mixing in UHMWPE/HDPE blends. These SSSP blends are easily processed by post-SSSP melt extrusion; for an SSSP blend with 50 wt% UHMWPE, we observe more than a factor of 1000 increase in viscosity at a shear rate of 0.01 s−1 but less than a factor of 5 increase at 100 s−1, the latter being more typical of melt-processing operations. Using extensional rheology, we confirm the strain hardening behavior of SSSP blends. Shear rheology and crystallization data show that the mixing between UHMWPE and HDPE can be improved with subsequent passes of SSSP and single-screw extrusion. Finally, we show that blending via SSSP leads to dramatic improvements in impact strength: as compared to literature results, injection-molded sample bars made from SSSP blends with 30–50 wt% UHMWPE exhibit very high values of notched Izod impact strength, 660–770 J/m (the impact strength of neat HDPE was 170 J/m).  相似文献   

10.
This article investigates the rheological and mechanical properties for blends of recycled high‐density polyethylene (HDPE) and virgin polyolefins and attempts to correlate relative shear viscosity and relative stiffness for these blends. These virgin polyolefins comprised a wide variety of flow characteristics, from high‐flow injection molding, low‐density and linear low‐density polyethylene to very low‐flow film blowing grade high‐density polyethylene. It can be seen that there is a variety of behaviors for the relative viscosity and relative stiffness of the blends studied. Relative viscosity and relative stiffness can largely be described by linear curves. This article categorizes these parameters according to the gradient of these linear curves. The difference between the relative viscosity gradient and relative stiffness gradient is identified as a product of a variety of factors, including branching content, viscosity level, and the nature of any side units. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 3505–3512, 2001  相似文献   

11.
Transient elongational viscosity of linear low density polyethylene (LLDPE) and two low density polyethylenes (LDPE1 and LDPE2) was measured at one temperature and different deformation rates in constant strain rate elongational rheometer. The elongational viscosity measurements revealed stronger strain hardening characteristics for LDPEs than that observed for LLDPE. The different response to stretching of these polymers is thought to relate to the presence of long chain branches in LDPEs, which affect the elongation viscosity profoundly. The onset of strain hardening for all long chain branched LDPEs as well as for linear LLDPE occurs at the same value of the critical strain, which is independent of temperature or deformation rate. An attempt has been made to explain this phenomenon in terms of the changes that occur in the macromolecular network upon stretching.  相似文献   

12.
Summary: The rheological behavior of polyethylenes is mainly dominated by the molecular weight, the molecular weight distribution and by the type, the amount and the distribution of the chain branches. In this work a linear metallocene catalyzed polyethylene (m‐PE), a branched metallocene catalyzed polyethylene (m‐bPE), a conventional linear low density polyethylene (LLDPE) and a low density polyethylene (LDPE) have been investigated in order to compare their rheological behavior in shear and in elongational flow. The four samples have similar melt flow index and in particular a value typical of film blowing grade. The melt viscosity has been studied both in shear and in isothermal and non‐isothermal elongational flow. The most important features of the results are that in shear flow the m‐PE sample shows less pronounced non Newtonian behavior while in the elongational flow the behavior of m‐PE is very similar to that of the linear low density polyethylene: the narrower molecular weight distribution and the better homogeneity of the branching distribution are reasonably responsible for this behavior. Of course the most pronounced non‐linear behavior is shown, as expected, by the LDPE sample and by the branched metallocene sample. This similar behavior has to be attributed to the presence of branching. Similar comments hold in non‐isothermal elongational flow; the LDPE sample shows the highest values of the melt strength and the other two samples show very similar values. As for the breaking stretching ratio the opposite is true for LDPE while m‐PE and LLDPE show higher values. The transient isothermal elongational viscosity curves show that the branched samples show a strain hardening effect, while LLDPE and m‐PE samples present a linear behavior.

Dimensionless flow curves of different polyethylene samples.  相似文献   


13.
Transient elongational viscosity of linear low density polyethylene (LLDPE) and its blends with 10% and 20% of low density polyethylene (LDPE) was measured at two temperatures by a constant strain rate elongational rheometer. In addition, the performance of the blends in the film blowing process was assessed in terms of bubble stability at two processing temperatures. An operating window for stable bubble production was determined. The elongational viscosity measurements on blends revealed stronger strain hardening characteristics at a higher temperature of testing. These results correlate favorably with findings from a bubble stability investigation where it was found that the size of the operating window for stable bubble production increased with increasing extrusion temperature. This work seems to indicate that increasing processing temperature during the film blowing of LLDPE-rich blends could lead to a processability improvement of these blends as far as bubble stability is concerned.  相似文献   

14.
研究了不同比例共混的茂金属聚乙烯 (MPE)和线性低密度聚乙烯 (LLDPE)熔体的流变学行为 ,讨论了共混物组成、剪切速率和剪切应力以及温度对熔体流变曲线、熔体粘度的影响 ,为MPE的共混改性提供了理论依据。结果表明 :随着LLDPE含量的增加 ,共混熔体的粘度降低 ,转变应力和非牛顿指数减小 ,粘流活化能升高 ,MPE的流动性和加工性能得到改善。  相似文献   

15.
In this article, shear rheology of solutions of different concentrations obtained by dissolution of cellulose in the ionic liquid (IL) solvent 1‐butyl‐3‐methylimidazolium chloride ([Bmim]Cl) was studied by measuring the complex viscosity and dynamic moduli at different temperatures. The obtained viscosity curves were compared with those of lyocell solutions and melt blowing grade polypropylene melts of different melt flow rates (MFR). Master curves were generated for complex viscosity and dynamic moduli by using Carreau and Cross viscosity models to fit experimental data. From the Arrhenius plots of the shift factors with respect to temperature, the activation energies for shear flow were determined. These varied between 18.99 and 24.09 kCal/mol, and were compared with values for lyocell solutions and different polymeric melts, such as polyolefins, polystyrene, and polycarbonate. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
The reactive extrusion of maleic anhydride grafted polypropylene (PP‐g‐MAH) with ethylenediamine (EDA) as coupling agent is carried out in a corotating twin‐screw extruder to produce long chain branched polypropylene (LCBPP). Part of PP‐g‐MAH is replaced by maleic anhydride grafted high‐density polyethylene (HDPE‐g‐MAH) or linear low‐density polyethylene (LLDPE‐g‐MAH) to obtain hybrid long chain branched (LCB) polyolefins. Compared with the PP‐g‐MAH, PE‐g‐MAH, and their blends, the LCB polyolefins exhibit excellent dynamic shear and transient extensional rheological characteristics such as increased dynamic modulus, higher low‐frequency complex viscosity, broader relaxation spectra, significantly enhanced melt strength and strain‐hardening behaviors. The LCB polyolefins also have higher tensile strength, tensile modulus, impact strength and lower elongation at break than their blends. Furthermore, supercritical carbon dioxide (scCO2) is constructively introduced in the reactive extrusion process. In the presence of scCO2, the motor current of the twin extruder is decreased and LCB polyolefins with lower melt flow rate (MFR), higher complex viscosity and increased tensile strength and modulus can be obtained. This indicates that the application of scCO2 can reduce the viscosity of melt in extruder, enhance the diffusion of reactive species, and then facilitate the long chain branching reaction between anhydride group and primary amine group. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
The aim of this work is to correlate the rheological properties and processability of various polyethylenes during the film‐blowing process. The effect of rheology on the kinematics and dynamics of film blowing for five different polyethylene resins has been extensively studied using a fully instrumented laboratory unit. The complex viscosity, shear viscosity, uniaxial elongational viscosity, and non‐uniform biaxial elongational viscosity, as well as the strain rates and stresses during film blowing, have been determined and correlated to the bubble stability. G′ versus G″ plots were found to be virtually independent of temperature for all polymers investigated. The more elastic polymers (larger G′ values) were found to be more stable in film blowing. Also, the more stable polymer melts were found to be those possessing larger elongational properties.  相似文献   

18.
As linear polyethylenes, ultrahigh‐molecular‐weight polyethylene (UHMWPE) and high‐density polyethylene (HDPE) have the same molecular structure, but the large difference in viscosity between them makes it difficult to obtain well‐mixed blends. An innovative eccentric rotor extruder (ERE) generating an elongational flow was used to prepare HDPE/UHMWPE blends within short processing times. Compared with the obvious two‐phase morphology of a sample from a twin‐screw extruder observed with a scanning electron microscope, few small UHMWPE particles were observed in the HDPE matrix for a sample from the ERE, indicating the good mixing on a molecular level of HDPE/UHMWPE blends achieved by the ERE during short processing times. The morphological changes of blends prepared using the ERE evidenced the good integration of HDPE and UHMWPE even though the UHMWPE content is up to 50 wt% in the blends. Moreover, all blends retained most of the intrinsic molecular weight. The good mixing was further confirmed from the thermal, crystallization and rheological behaviors determined using differential scanning calorimetry and dynamic rheological measurements. Importantly, the 50/50 blend presented improved mechanical properties, especially super‐impact strength of 151.9 kJ m?2 with incomplete‐break fracture state. The strengthening and great toughening effects of UHMWPE on the blends were attributed to the addition of unwrapped UHMWPE long molecular chains. The effective disentanglement mechanism of UHMWPE chains under elongational flow was explained schematically by a non‐parallel three‐plate model. © 2019 Society of Chemical Industry  相似文献   

19.
R. Muller  D. Froelich 《Polymer》1985,26(10):1477-1482
A new extensional rheometer allowing the simultaneous measurement of elongational viscosity and flow birefringence is described. Polystyrene melts have been tested at different temperatures and strain rates. It appears that the time-temperature superposition principle holds for elongational tests in the temperature range investigated, with the same shift factors as for linear shear experiments. It has been verified that the stress optical behaviour of the melts is linear for small values of the stress whereas significant deviations appear at higher stresses.  相似文献   

20.
The relationships between structure and rheology of polyethylene/clay hybrid composite blown films were investigated through rheological tests both in shear and elongational flow. Two polymer matrices (low density polyethylene, LDPE and linear low density polyethylene, LLDPE) with different relaxation kinetics were used. Independently from the matrix, morphological analyses (TEM, XRD, and SEM) indicate that the hybrid structures are similarly constituted of delaminated platelets or tactoids having a relevant degree of orientation along the draw direction. This strongly affects the rheological behavior of materials. However, despite the similarities emerged from morphological analyses, both shear (steady shear and oscillatory) and elongation measurements show a negligible effect upon the rheology of LDPE‐based nanohybrids. Conversely, relevant increases of shear viscosity, dynamic moduli and melt strength of LLDPE‐based nanohybrids have been detected. The effects of homopolymer relaxation kinetics have been investigated by means of stress relaxation tests. The results obtained seem to be consistent with the existence of a roughly bimodal population of dynamical species: a matrix component behaving like the homopolymer, and a fraction interacting with the filler, whose rheological behavior is controlled by the particles and their interactions with the polymer. Mechanical properties of hybrid films were also investigated. Differently from what happens in the melt state, the solid‐state properties mainly depend on the filler amount. The relative increases of tensile modulus and melt strength are of the same order of magnitude for both the matrices used, indirectly confirming the similarities in hybrids structures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4749–4758, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号