首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
余义开  蔡明中  王涛  彭以元 《应用化工》2007,36(8):799-802,806
通过一种反应条件较为温和的反应新工艺,合成联苯二甲酰氯,即4,4’-二氯甲酰基联苯(BC IBP)。然后,在无水A lC l3及N-甲基吡咯烷酮(NMP)/1,2-二氯乙烷(DCE)复合溶剂的存在下,将2,6-二苯氧基苯甲腈(DPOBN)与BC IBP进行低温缩聚反应,合成了一类新型含氰侧基联苯型聚芳醚醚酮酮。用IR,DSC,TG,WAXD及元素分析等方法对其结构和性能进行了表征。结果表明,所合成的聚合物具有预期结构且为非晶态聚合物;其玻璃化转变温度(Tg)为211℃,在氮气气氛中及在空气气氛中的热分解5%的温度(Td)分别为523℃及498℃,说明其具有突出的耐高温性能;聚合物除了能在浓H2SO4,CF3COOH/CHC l3等强质子性溶剂当中溶解外,对其他的溶剂均不溶解,说明聚合物具有优异的耐化学腐蚀性能。  相似文献   

2.
以4,4′-二苯氧基二苯砜(DPODPS)、对苯二甲酰氯(TPC)和间苯二甲酰氯(IPC)为单体,无水AlCl3/二氯乙烷(DCE)/N,N-甲基甲酰胺(DMF)为催化溶剂体系,通过低温溶液共缩聚反应,合成系列聚芳醚砜醚酮酮(PESEKKs),用IR、DSC、WAXD、TG等技术对聚合物进行了结构和性能的表征,研究结果表明,随着高分子主链中间位苯基结构单元的增加,对共聚玻璃化转变温度(Tg)和热分解温度(Td)影响不大,熔融温度(Tm)和结晶则逐渐降低,但仍保持良好的耐热性,溶解性等到很大改善。  相似文献   

3.
    
9,9‐Bis(4‐hydroxyphenyl)xanthene (BHPX), a bisphenol monomer, was synthesized in 82% yield from xanthenone in a one‐pot, two‐step synthetic procedure. Four novel aromatic poly(ether ketone)s (PEKs) based on BHPX were prepared via a nucleophilic aromatic substitution polycondensation with four difluorinated aromatic ketones. The polycondensation proceeded in tetramethylene sulfone in the presence of anhydrous potassium carbonate and afforded the new cardo PEKs in nearly quantitative yields with inherent viscosities of 0.77–0.85 dL/g. High molecular weight PEKs having number‐average molecular weights (Mn's) in the range of 38,900–40,600 g/mol with the polydispersity index ranged from 1.97 to 2.06 are all amorphous and show high glass transition temperatures ranging from 210°C to 254°C, excellent thermal stability, and the temperatures at the 5% weight loss are over 538°C with char yields above 60% at 700°C in nitrogen. These new PEKs are all soluble in polar aprotic solvents such as N‐methyl‐2‐pyrrolidone and N, N′‐dimethylacetamide and could also be dissolved in chloroform and tetrahydrofuran. All the polymers formed transparent, strong, and flexible films with tensile strengths of 78–84 MPa, Young's moduli of 2.54–3.10 GPa, and elongations at break of 14–18 %. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
以二甲基乙酰胺为溶剂,叔胺为盐酸吸收剂,将4,4′-二氨基二苯醚与2,6-二(4-氯甲酰苯氧基)苯甲腈进行低温缩聚反应,合成含氰侧基及醚基结构的聚芳酰胺。结果表明:当反应体系摩尔浓度为0.45~0.55mol/L,初始反应温度为0℃,以2-甲基吡啶为盐酸吸收剂时,制得的聚芳酰胺相对分子质量较高,该聚合物热分解温度(失重5%)为419℃。  相似文献   

5.
聚芳醚砜酮纤维的热性能   总被引:1,自引:0,他引:1  
采用DSC、TG测定了含联苯结构聚芳醚砜酮 (PPESK)纤维的热性能 ,结果表明 ,纤维的玻璃化温度随砜酮比的增大而提高 ,纤维的起始分解温度大于 463℃。当砜酮比为 15 / 85 ,5 0 / 5 0 ,75 / 2 5时 ,纤维的玻璃化温度分别为 2 5 7.62 ,2 78.64 ,2 79.71℃ ;热分解活化能分别为 15 0 .8,2 19.9,195 .5kJ/mol;热分解反应级数分别为 1,1.76,1级  相似文献   

6.
    
Rheological properties of the blends of poly(aryl ether ether ketone) (PEEK) with liquid crystalline poly(aryl ether ketone) containing substituted 3‐trifluoromethylbenzene side group (F‐PAEK), prepared by solution precipitation, have been investigated by rheometer. Dynamic rheological behaviors of the blends under the oscillatory shear mode are strongly dependent on blend composition. For PEEK‐rich blends, the systems show flow curves similar to those of the pure PEEK, i.e., dynamic storage modulus G′ is larger than dynamic loss modulus G″, showing the feature of elastic fluid. For F‐PAEK‐rich systems, the rheological behavior of the blends has a resemblance to pure F‐PAEK, i.e., G″ is greater than G′, showing the characteristic of viscous fluid. When the PEEK content is in the range of 50–70%, the blends exhibit an unusual rheological behavior, which is the result of phase inversion between the two components. Moreover, as a whole, the complex viscosity values of the blends are between those of two pure polymers and decrease with increasing F‐PAEK content. However, at 50% weight fraction of PEEK, the viscosity‐composition curves exhibit a local maximum, which may be mainly attributed to the phase separation of two components at such a composition. The changes of G′ and G″ with composition show a trend similar to that of complex viscosity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4040–4044, 2006  相似文献   

7.
介绍了聚芳醚酮的物理化学性质,主要对近年来研究的热点超支化聚醚酮改性、化学改性和磺化改性等进行了综述.  相似文献   

8.
    
The blends of poly(ether sulfone) and poly(aryl ether ketone) containing 1,4‐naphthalene were prepared by melt mixing in a Brabender‐like apparatus. The specimens for measurements were made by compression molding under pressure and then were water‐quenched at room temperature. The tensile strength, tensile modulus, elongation at break, thermal analysis, and scanning electron microscopy were each measured. The dependence of tensile strength, tensile modulus, and elongation at break on blend systems was obtained. The effects of composition and miscibility on the mechanical properties are discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 472–476, 2006  相似文献   

9.
    
A series of poly[(ether ether ketone)‐co‐(ether naphthalene ether ketone)] (P(EEK‐co‐ENEK)) copolymers were heated under a variety of conditions. The thermal crosslinking behavior was monitored by differential scanning calorimetry (DSC), electron spin resonance (ESR) and wide‐angle X‐ray diffraction (WAXD). The results indicate that under a non‐oxidative environment such as nitrogen P(EEK‐co‐ENEK) is more stable, while under oxidative conditions a crosslinking reaction takes place that causes a reduction in the crystallizability of the copolymers, and an increase in the concentration of free radicals on the copolymer. ESR results suggest that the crosslinking reaction proceeds via free radicals. Subsequently two kinds of free radicals were characterized: one is an RO? type free radical and the other is a naphthalene ring free radical. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
以α-萘酚为原料,通过和4,4′-二氟二苯酮在N,N-二甲基乙酰胺(DMAC)及K2CO3中的缩合反应制备了一种含萘环的新型芳醚单体4,4′-二(α-萘氧基)二苯酮(DNBP),将其分别与2,5-二氯对苯二甲酰氯(DCTPC)。对苯二甲酰氯(TPC)等芳二酰氯通过在NMP/AlCl3/ClCH2CH2Cl复合溶剂/催化剂体系中的低温溶液进行亲电共缩聚反应,合成了一系列在分子主链芳环上引入侧基氯原子的同时,又在主链中引入刚性萘环结构的新型聚芳醚酮醚酮酮无规共聚物。  相似文献   

11.
以2,2¢,6,6¢-四甲基-4,4¢-二苯氧基二苯砜(o-M2DPODPS)、二苯醚(DPE)和对苯二甲酰氯(TPC)为单体,在无水AlCl3和N,N-二甲基甲酰胺(DMF)存在的条件下,于1,2-二氯乙烷(DCE)中进行低温溶液无规共缩聚,合成了一系列新型线型高分子量含双邻甲基取代结构的聚醚砜醚酮酮(DM-PESEKK)/聚醚酮酮(PEKK)无规共聚物,并用IR, DSC, XRD, TGA和1H-NMR等方法对共聚物进行了表征分析,考察了共聚物的溶解性能. 结果表明,随着DM-PESEKK含量的增加,玻璃化转变温度(Tg)逐渐升高,熔融温度(Tm)逐渐降低,结晶度下降,溶解性得到明显改善.  相似文献   

12.
A new method for the production of foamed thermoplastic polymers from blends of a poly(aryl ether ketone) (PAEK) and polyetherimide (PEI) is presented. The blowing agent for the foaming process is water which is produced at elevated temperatures in an extruder, via an in situ reaction between an amine end group on the PEI, and a ketone functionality on the backbone of the PAEK chain. The effect of composition, mixing, time, and temperature are investigated. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1543–1550, 1997  相似文献   

13.
    
2,6‐Diphenoxybenzonitrile (DPOBN) was synthesized by reaction of phenol with 2,6‐difluorobenzonitrile in N‐methyl‐2‐pyrrolidone in the presence of KOH and K2CO3. Poly(aryl ether ketone ketone)/poly(aryl ether ether ketone ketone) copolymers with pendant cyano groups were prepared by the Friedel–Crafts electrophilic substitution reaction of terephthaloyl chloride with varying mole proportions of diphenyl ether and DPOBN using 1,2‐dichloroethane as solvent and N‐methyl‐2‐pyrrolidone as Lewis base in the presence of anhydrous AlCl3. The resulting polymers were characterized by various analytical techniques, such as FT‐IR, differential scanning calorimeter, thermal gravimetric analysis, and wide‐angle X‐ray diffraction. The crystallinity and melting temperature of the polymers were found to decrease with increase in concentration of the DPOBN units in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 514°C in N2 atmosphere. The glass transition temperature was found to increase with increase in concentration of the DPOBN units in the polymer when the molar ratios of DPOBN to DPE ranged from 10/90 to 30/70. The copolymers containing 30–40 mol % of the DPOBN units exhibit excellent thermostability at (350 ± 10)°C and have good resistance to acidity, alkali, and organic solvents. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3601–3606, 2007  相似文献   

14.
以新型聚合单体1-甲基-4,5-二(4-氯代苯甲酰基)环已烯与4-(3,5-甲基-4-羟基苯基)-2,3-二氮杂萘-1-酮、4,4’-二氯二苯砜单体经亲核取代反应,成功地合成了含环己烯结构的杂环联苯型聚醚砜酮聚合物。用FT-IR、1H-NMR、DSC、X-射线衍射等方法对聚合物进行了表征,并研究了聚合物的溶解性能。结果表明,聚合物是一种具有较高的玻璃化温度的可溶性无规共聚物。聚合物含有不饱和双键结构,是一种反应性高分子。  相似文献   

15.
新型耐高温杂环聚醚砜酮酮材料的研究   总被引:5,自引:0,他引:5  
合成一种新型热塑性耐高温杂环聚醚砜酮酮材料(PPESKK),研究了材料的热性能、力学性能、电性能、溶解性能、摩擦性能及膜性能。结果表明,PPESKK为一类具有较高耐热性、综合性能优良、成本低的机械工程塑料。  相似文献   

16.
    
The synthesis of a novel chloro monomer containing the 1,2‐dibenzoylbenzene moiety was described. The chloro monomer was reacted with 4‐(4‐hydroxyphenyl)‐1(2H)‐phthalazinone compound in the presence of excess anhydrous potassium carbonate in an aprotic solvent (Sulfolane), and high molecular weight amorphous poly(aryl ether ketone ketone) was synthesized. The polymers with high glass transition temperature were soluble in solvents such as chloroform and nitrobenzene at room temperature and easily cast into flexible, colorless, and transparent films. The 5% weight loss of the polymers was >400 °C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1487–1492, 2001  相似文献   

17.
    
PEEK/PEI/PES plastics alloys in weight ratios of 70/30/0, 70/25/5, 65/30/5, 60/30/10, 60/35/5, and the three kinds of single high performance engineering plastics 100/0/0, 0/100/0, 0/0/100 were prepared by twin‐screw extrusion molding. A single glass‐transition temperature (Tg) of each alloy in the former five kinds of the plastics alloys could be measured by DSC and always rose to higher one than that of the pure PEEK by about 20°C. The crystalline degrees of these alloys could also ascended to more than 35.81% higher than that of the pure PEEK, especially for the alloy of the ratio 60/30/10 reached the maximum crystalline degree 37.76%. Adding PEI or PEI and PES, the crystalline temperatures of the PEEK alloys were decreased. The wear resistances of the alloys under dry sliding condition were considerably improved compared with pure PEI or PES, and the specific wear rate of the pure PEI or PES were four to six times as large as that of the alloys. However, the specific wear rates of the alloys were six to eight times larger than that of the pure PEEK, and the friction coefficients of the alloys were higher than that of the pure PEEK for 0.2–0.3. The polymeric transferred film on the steel ring surface against the alloys could be found, but no film on that against pure PES or PEI was found. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

18.
通过三步反应合成新的含氟双酚单体3,4-二氟苯基对苯二酚,由该含氟双酚单体、4-氟苯基对苯二酚、邻苯基对苯二酚分别与4,4′-二氟二苯酮、4,4′-二氯二苯砜经亲核缩聚反应,制备了一系列新型聚芳醚酮和聚芳醚砜。采用 FT-IR、DSC、TGA及XRD手段等对聚合物的结构和性能进行了表征和研究,结果表明:合成的聚芳醚酮和聚芳醚砜具有优异的耐热性能,玻璃化转变温度分别在150~159 ℃和177~196 ℃之间,氮气中5 %热失重温度分别在527 ℃和507 ℃以上。合成的聚芳醚酮和聚芳醚砜具有良好的溶解性,室温下能溶解在N-甲基吡咯烷酮、二甲基乙酰胺、氯仿等有机溶剂中。  相似文献   

19.
综述了含二氮杂萘酮结构的聚芳醚酮和聚芳醚砜的结构性能及其合成、改性、应用研究进展。  相似文献   

20.
    
This paper presents a feasible method for introducing crosslinkable groups into a polymer to achieve excellent chemical resistance and improved thermal stability. Here, 3,6‐bi(4‐fluorobenzenzoyl)‐N‐allylcarbazole, a novel allyl‐containing difluoroketone monomer, is synthesized and characterized. The resulting monomer is polymerized with phenolphthalein through the aromatic nucleophilic substitution reaction at 160 °C to provide the soluble poly(aryl ether ketone) (PAEK) with a pendant allyl group. The obtained PAEK is characterized using Fourier transform infrared spectroscopy, NMR and gel permeation chromatography. The crosslinking reaction of the polymer occurs at 270 °C, and it imparts excellent solvent resistance. DSC analysis shows that the glass transition temperature (Tg) of the cured polymer increases to 262–306 °C when the curing temperature is elevated or when the curing time is extended within certain limits. The rate of increase of Tg and the rate of the crosslinking reaction decrease as the curing time is extended under all of the investigated curing temperatures. The cured PAEKs possess good thermal stability with 5% weight loss temperatures up to 450 °C. The tensile strength and Young's modulus of the polymer film cured at 300 °C for 2 h are 65 MPa and 1.4 GPa, respectively. In addition, the polymer films before and after curing exhibit similar UV?visible absorption and blue light emission. © 2014 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号