首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选取了一些可应用于锂硫电池电解液并具有较为优异性能的含氟有机溶剂,并对它们的合成研究进行了综述。  相似文献   

2.
锂硫电池由于其理论能量密度高,理论比容量高,环境友好等特性,成为最有潜力应用于电动汽车与电子设备的能量储存介质之一。然而由于锂硫电池的硫正极绝缘性,多硫化物的溶解导致的穿梭效应和锂负极枝晶等问题,阻碍了锂硫电池的商业化应用。介绍了锂硫电池正极材料的结构改进与锂负极材料的保护,包括使用不同类型的碳材料与导电金属氧化物用于正极的导电框架,以及使用电解液添加剂,人工保护层等方式对锂负极进行保护。最后,对锂硫电池的未来发展进行了展望。  相似文献   

3.
正近日,中国科学院大连化学物理研究所储能技术研究部张华民、李先锋、张洪章团队研发出一种含大体积阳离子的锂硫电池电解液,并证实其能够有效提高多硫化物稳定性,延长锂硫电池的循环寿命。锂硫电池具有能量密度高、成本低、环境友好的优势,是国际储能领域的研究热点之一。然而,由于锂硫电池存在多硫化锂飞梭、多硫化锂歧化、电解液分解、金属锂枝晶粉化等问题,导致  相似文献   

4.
<正>近日,中国科学院大连化学物理研究所储能技术研究部张华民、李先锋、张洪章团队研发出一种含大体积阳离子的锂硫电池电解液,并证实其能够有效提高多硫化物稳定性,延长锂硫电池的循环寿命。锂硫电池具有能量密度高、成本低、环境友好的优势,是国际储能领域的研究热点之一。然而,由于锂硫电池存在多硫化锂飞梭、多硫化锂歧化、电解液分解、金属锂枝晶粉化等问题,导致其循环寿命短,难以满足  相似文献   

5.
《山东化工》2021,50(8)
锂硫电池因自身所含硫元素储量丰富、价格低廉、理论比容量高等优势,逐渐被科研工作者所关注。然而,锂硫电池所采用的液态有机电解液普遍存在挥发,漏液,燃烧等潜在安全隐患,因此,我们通过原位聚合制备出一种固态聚合物电解质来提升锂硫电池安全性能,同时还可以兼顾锂硫电池的循环稳定性。实验结果表明:以聚乙二醇甲醚丙烯酸酯(PDEM)为基体的固态聚合物电解质应用于硫化聚丙烯腈(PAN-S)/锂金属电池具有良好的长循环性能,说明该固态聚合物电解质与正负极具有良好的界面相容性。  相似文献   

6.
锂离子电池因其比容量高、无记忆效应、循环寿命长等优点应用于各个领域中。本文对锂离子电池电解液现状进行了总结,并对混合锂盐电池在未来的发展方向进行梳理,最后对锂盐混合液在锂离子电池中的应用进行了分析,以期促进锂离子电池能够取得更好的发展。  相似文献   

7.
锂硫电池由于具有较高的理论比能量和环保性能,已成为最有前途的高比能电池系统之一。然而,锂金属阳极在锂硫电池中的实际应用仍有阻碍。本文设计了一种简单的方法在锂阳极上制备锂硅/氯杂化保护层,该保护层不仅能对锂枝晶生长起到抑制作用,还为电荷的快速转移提供了动能。由于硫化聚丙烯腈的高导电性和改性锂阳极的高交换电流密度,使得锂-硫化聚丙烯腈电池能够保持稳定的充放电循环,并表现出优异的倍率性能。即使阴极有8 mAh/cm~2的高面积容量,电池也可以在0.2C时以500 mAh/g的比容量保持50次以上的循环。  相似文献   

8.
磷酸铁锂结构稳定、循环性能优异,但是随着主机厂家对质保要求的不断提升,磷酸铁锂仍面临着高温循环性能不能满足客户要求的情况。以磷酸铁锂正极锂离子电池为研究对象,分别对比了基础电解液体系和改善电解液体系[在基础电解液中添加二氟二草酸硼酸锂(LiODFB)]对电池高温循环性能的影响。对循环后的电池采用直流内阻(DCIR)、电化学交流阻抗谱(EIS)、d Q/d U(恒定的电压间隔内电池容量的变化)曲线等无损分析方式进行数据对比,结果表明改善电解液体系电池的电荷转移阻抗进一步降低。通过对电池进行解剖,对两种电解液体系的电池极片进行了厚度分析、X射线衍射(XRD)分析、扫描电镜(SEM)分析、电感耦合等离子体发射光谱(ICP)元素分析等,结果表明改善电解液体系的电池在抑制负极表面副反应、减少正极铁溶出方面具有明显的效果,因此电池的高温循环性能更好。  相似文献   

9.
《山东化工》2021,50(7)
传统的碳酸酯类液态有机电解液存在潜在的安全隐患,本文旨在开发一种阻燃凝胶聚合物电解质以改善锂金属电池的安全性。本文制备的甲基丙烯酰氧基丙基三甲氧基硅烷(KH570)阻燃凝胶聚合物电解质由于其本质安全、成本低廉、易原位聚合制备等优势,有望在锂金属电池中实现较为广阔的应用。  相似文献   

10.
电解液锂盐是锂离子电池的最重要组成部分之一。对现有锂盐进行修饰和合成具有特定性质的新型锂盐是提高锂离子电池性能的有效手段。文章就目前国内外锂离子电池电解液有机锂盐的研究进展进行了综述。在总结这些锂盐开发研究工作共同点的基础上,提出了锂盐的发展方向及其开发思路。  相似文献   

11.
日本京都大学金村圣志助教授的研究组开发了锂二次电池电解液。以前的锂二次电池电解液中六氟化锂在4.2V电压时会氧化分解,现开发了溶解于带有氟碳长链亚胺盐溶剂的电解液,即使电压加到5V也不会分解。因为价格高,所以预期将用作以安全性为优先的脑起搏器等医疗用的和电气助动车用的锂二次电池电解液。京大开发锂二次电池电解液@任伟成  相似文献   

12.
锂硫电池是极具实用前景的新型高能量密度电池体系之一,但在充放电过程中会产生可溶于液态电解液的多硫化锂,引发穿梭效应和硫的快速损失,导致电池的容量和循环性能难以满足实用化的要求。钛基化合物的结构多样且易于调控,对多硫化锂也有较强的吸附能力和催化转化活性,是抑制穿梭效应的常用材料之一。主要介绍了钛基化合物对多硫化锂的物理限域、化学吸附和催化转化能力等性质,系统讨论了不同种类的钛基化合物在锂硫电池正极中的作用,在此基础上对钛基化合物在锂硫电池中的应用前景进行了探讨。  相似文献   

13.
在六氟磷酸锂(LiPF_6)基电解液中,掺杂不同比例的四氟硼酸锂(LiBF_4),得到了一种性能优化的混合锂盐电解液配方。利用LiBF_4较好的化学稳定性和热稳定性,新配方保持了六氟磷酸锂基电解液物理性状和电池的倍率性能,并且有效改善了电池的放电性能及循环性能。  相似文献   

14.
本研究通过在六氟磷酸锂(Li PF6)基电解液中,掺杂不同比例的四氟硼酸锂(Li BF4),得到了一种性能优化的混合锂盐电解液配方。利用Li BF4较好的化学稳定性和热稳定性,新配方保持六氟磷酸锂基电解液物理性状和电池的倍率性能的同时,有效改善了电池的放电性能及循环性能。  相似文献   

15.
《硅酸盐学报》2021,49(7):1263-1277
相比于液态锂电池,固态锂金属电池由于电解质不易燃、不挥发而具有更高的安全性。此外,固态电解质能够有效抑制锂枝晶的生长,使基于高能量密度的锂金属作为负极材料成为可能。但是,固态锂金属电池存在着界面阻抗大、固体电解质/电极兼容性差、电解质离子电导率低及电化学窗口较窄等问题。因此,开发高性能的柔性固体电解质对推动固态锂金属电池的发展起着重要作用。本工作总结了固态锂金属电池中聚合物与不同类型填料复合最新研究进展及复合固体电解质匹配电极材料时存在的界面阻抗大问题与解决策略。  相似文献   

16.
正美国马里兰大学、陆军研究实验所和阿尔贡国家实验室等机构的研究人员近日发现,使用高度氟化的电解液可大幅提高电池的储电能力和耐用性,这项技术将有助于推动电动汽车的进一步发展。研究人员以化学性质极不稳定的锂金属为负极制备了一种电池,配以高氟电解液。结果发现,这种电池能够充放电多达1 000次,而储电能力仅降至一开始的93%。这意味着可在维持续航里程基本不减少的情况下延长电动汽车的使用寿命。而且除了锂金属负极外,高  相似文献   

17.
锂硫电池理论能量密度高(2 600 W·h/kg)、硫原料丰富、成本低,是最有发展前景的锂二次电池技术之一。然而硫以及放电产物硫化锂电导率低,电化学反应过程中生成的可溶性多硫化物的"穿梭效应"以及电池充放电过程中电极的体积效应等,影响了锂硫电池性能的发挥,阻碍了锂硫电池实用化进程。近年来,通过电极材料的设计、电极表界面的修饰以及电解液体系优化,锂硫电池的性能得到显著提升。综述了近年来锂硫电池中硫正极、隔膜和金属Li表界面修饰方面的研究进展。  相似文献   

18.
因兼顾成本低、安全性能好及体积能量密度高(3832 A·h·L-1)等优点,镁金属二次电池受到了广泛关注。但是,镁负极的实际应用仍然受限于电解液活性物种溶剂化结构的认识不足。目前,镁基电解液主要分为醚类溶剂的格氏试剂电解液、氯化镁铝络合物(MACC)电解液和Mg(TFSI)2基电解液等。其中,镁离子-氯离子的配位结构对镁电池正常运行起到了关键作用,主要突出在降低沉积过电位、增强镁沉积动力学和提高沉积镁可逆性等方面。以氯离子在体相电解液中和在电极界面上与镁之间的相互作用为切入点,分析了镁基电解液的前期开发路线及设计理念,并对镁二次电池的未来发展进行了总结和展望。  相似文献   

19.
锂金属兼具低电位和高比容量,是一种理想的高比能锂电池负极材料.由于锂金属几乎能与所有的电解液反应,并且充放电过程会不断暴露出高活性锂金属加剧副反应的发生,使得锂金属负极在循环过程中的库伦效率很低.为了提高锂金属负极在有限过量锂条件下的循环寿命,迫切需要改善锂负极的库伦效率.在本工作基于具有较高库伦效率的含醚电解液,通过...  相似文献   

20.
以水溶液为电解液的水系锂离子电池体系因其功率高、安全性好且成本低廉得到广泛的研究。由于水系电解液的电化学窗口较窄(≈1.23V),在选择水系锂离子电池正极材料时便受到了一定的限制。尖晶石锰酸锂LiMn_2O_4由于合适的充放电电压平台和较好的热稳定性,而且来源广、成本低、合成工艺简单、环境友好等特点,被认为是最具发展前景的水系锂离子电池正极材料。然而LiMn_2O_4在充放电过程中锰溶解导致电池较差的循环稳定性,这在很大程度上限制了其应用。LiMn_2O_4在水系电解液中的循环稳定性,尤其是高温下的循环稳定性,需要研究者深入探究。围绕LiMn_2O_4材料的合成与结构设计,研究了其在水系电解液中容量衰减机理,并基于LiMn_2O_4正极材料建立了一系列具有优异电化学性能的新型水系储能体系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号