首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A new type of tetraimide‐dicarboxylic acid (I) was synthesized starting from the ring‐opening addition of m‐aminobenzoic acid (m‐ABA), 4,4′‐oxydiphthalic anhydride (ODPA) and 4,4′‐methylenedianiline (MDA) at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I. A series of soluble and light‐coloured poly(amide–imide–imide)s (IIIa–j) was prepared by triphenyl phosphite‐activated polycondensation from the tetraimide‐diacid I with various aromatic diamines (IIa–j). All films cast from DMAc had cutoff wavelengths shorter than 400 nm (376–393 nm) and had b* values between 20.46 and 40.67; these polymers were much lighter in colour than those of the corresponding trimellitimide series. All polymers were readily soluble in a variety of organic solvents such as NMP, N,N‐dimethylacetamide, dimethyl sulfoxide, and even in the less polar m‐cresol and pyridine. Compared with those of corresponding ODPA–MDA polyimide, the solubilities of poly(amide–imide–imide)s IIIa–j were greatly improved. Polymers IIIa–j afforded tough, transparent, and flexible films, which had tensile strengths ranging from 82 to 105 MPa, elongations at break from 8 to 14%, and initial moduli from 2.0 to 2.2 GPa. The glass transition temperature of polymers were recorded at 255–288 °C. They had 10% weight loss at a temperature above 540 °C and left more than 60% residue even at 800 °C in nitrogen. © 2002 Society of Chemical Industry  相似文献   

2.
A series of new aromatic poly(amide–imide)s (PAIs) was synthesized by triphenyl phosphite‐activated polycondensation of the diimide–diacid, 1,4‐bis(trimellitimido)‐2,3,5,6‐tetramethylbenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The PAIs had inherent viscosities of 0.82–2.43 dL/g. The diimide–diacid monomer (I) was prepared from 2,3,5,6‐tetramethyl‐p‐phenylenediamine with trimellitic anhydride (TMA). Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents including NMP, N,N‐dimethylacetamide (DMAc), and N,N‐dimethylformamide (DMF). Transparent, flexible, and tough films of these polymers could be cast from DMAc solutions. Their cast films had tensile strengths ranging from 80 to 95 MPa, elongation at break from 10 to 45%, and initial modulus from 2.01 to 2.50 GPa. The 10% weight loss temperatures of these polymers were above 510°C in nitrogen. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1162–1170, 2000  相似文献   

3.
A new monomer of tetraimide‐dicarboxylic acid (IV) was synthesized by starting from ring‐opening addition of 4,4′‐oxydiphthalic anhydride, trimellitic anhydride, and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene at a 1:2:2 molar ratio in N‐methyl‐2‐pyrrolidone (NMP). From this new monomer, a series of novel organosoluble poly(amide‐imide‐imide)s with inherent viscosities of 0.7–0.96 dL/g were prepared by triphenyl phosphite activated polycondensation from the tetraimide‐diacid with various aromatic diamines. All synthesized polymers were readily soluble in a variety of organic solvents such as NMP and N,N‐dimethylacetamide, and most of them were soluble even in less polar m‐cresol and pyridine. These polymers afforded tough, transparent, and flexible films with tensile strengths ranging from 99 to 125 MPa, elongations at break from 12 to 19%, and initial moduli from 1.6 to 2.4 GPa. The thermal properties and stability were also good with glass‐transition temperatures of 236–276°C and thermogravimetric analysis 10 wt % loss temperatures of 504–559°C in nitrogen and 499–544°C in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2854–2864, 2006  相似文献   

4.
A series of new cardo poly(ether imide)s bearing flexible ether and bulky xanthene pendant groups was prepared from 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene with six commercially available aromatic tetracarboxylic dianhydrides in N,N‐dimethylacetamide (DMAc) via the poly(amic acid) precursors and subsequent thermal or chemical imidization. The intermediate poly(amic acid)s had inherent viscosities between 0.83 and 1.28 dL/g, could be cast from DMAc solutions and thermally converted into transparent, flexible, and tough poly(ether imide) films which were further characterized by X‐ray and mechanical analysis. All of the poly(ether imide)s were amorphous and their films exhibited tensile strengths of 89–108 MPa, elongations at break of 7–9%, and initial moduli of 2.12–2.65 GPa. Three poly(ether imide)s derived from 4,4′‐oxydiphthalic anhydride, 4,4′‐sulfonyldiphthalic anhydride, and 2,2‐bis(3,4‐dicarboxyphenyl))hexafluoropropane anhydride, respectively, exhibited excellent solubility in various solvents such as DMAc, N,N‐dimethylformamide, N‐methyl‐2‐pyrrolidinone, pyridine, and even in tetrahydrofuran at room temperature. The resulting poly(ether imide)s with glass transition temperatures between 286 and 335°C had initial decomposition temperatures above 500°C, 10% weight loss temperatures ranging from 551 to 575°C in nitrogen and 547 to 570°C in air, and char yields of 53–64% at 800°C in nitrogen. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 1,4‐bis(trimellitimido)‐2,5‐dichlorobenzene (I), with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.88–1.27 dL g−1. The diimide‐diacid monomer (I) was prepared from 2,5‐dichloro‐p‐phenylenediamine with trimellitic anhydride. All the resulting polymers were amorphous and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Cast films had tensile strengths ranging from 92 to 127 MPa, elongations at break from 4 to 24%, and initial moduli from 2.59 to 3.65 GPa. The glass transition temperatures of these polymers were in the range of 256°–317°C, and the 10% weight loss temperatures were above 430°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 271–278, 1999  相似文献   

6.
A series of new aromatic poly(amide‐imide)s were synthesized by the triphenyl phosphite‐activated polycondensation of the diimide‐diacid, 2,5‐bis(trimellitimido)chlorobenzene (I) with various aromatic diamines in a medium consisting of N‐methyl‐2‐pyrrolidone (NMP), pyridine, and calcium chloride. The poly(amide‐imide)s had inherent viscosities of 0.76–1.42 dL g−1. The diimide‐diacid monomer (I) was prepared from 2‐chloro‐p‐phenylenediamine with trimellitic anhydride. Most of the resulting polymers showed an amorphous nature and were readily soluble in a variety of organic solvents, including NMP and N,N‐dimethylacetamide. Transparent, flexible, and tough films of these polymers could be cast from N,N‐dimethylacetamide or NMP solutions. Their cast films had tensile strengths ranging from 74 to 95 MPa, elongations at break from 7 to 11%, and initial moduli from 1.38 to 3.25 GPa. The glass transition temperatures of these polymers were in the range of 233°–260°C, and the 10% weight loss temperatures were above 450°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1691–1701, 1999  相似文献   

7.
A new‐type tetraimide‐dicarboxylic acid ( I ) was synthesized starting from the ring‐opening addition of p‐aminobenzoic acid (p‐ABA), 4,4'‐oxydiphthalic anhydride (ODPA), and 4,4'‐methylenedianiline (MDA) at a 2:2:1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP), followed by cyclodehydration to the diacid I. A series of poly(amide‐imide‐imide)s ( III a‐i ) with inherent viscosities of 0.78–1.45 dL/g was prepared by triphenyl phosphite‐activated polycondensation from the tetraimide‐diacid I with various aromatic diamines ( II a‐i ) in a medium consisting of NMP, pyridine, and calcium chloride. Most of the polymers were readily soluble in a variety of organic solvents such as NMP, N,N‐dimethyl acetamide, dimethyl sulfoxide, and even in less polar m‐cresol. Compared with those of the corresponding poly(amideimide)s IV a‐i , the solubilities of poly(amide‐imide‐imide)s III a‐i were greatly improved. Polymers III a‐h afforded tough, transparent, and flexible films, which had tensile strengths ranging from 87 to 107 MPa, elongations at break from 9% to 14%, and initial moduli from 2.0 to 2.4 GPa. The glass transition temperatures of polymers were recorded at 270°C–309°C. They had 10% weight loss at temperatures in the range of 540°C–570°C and left more than 52% residue even at 800°C in nitrogen.  相似文献   

8.
A new diimide–diacid chloride (3) containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by treating 2,2′‐dimethyl‐4,4′‐diamino‐biphenylene with trimellitic anhydride followed by refluxing with thionyl chloride. Various new poly(ester‐imide)s were prepared from 3 with different bisphenols by solution polycondensation in nitrobenzene using pyridine as hydrogen chloride quencher at 170°C. Inherent viscosities of the poly(ester‐imide)s were found to range between 0.31 and 0.35 dL g?1. All of the poly(ester‐imide)s, except the one containing pendent adamantyl group 5e, exhibited excellent solubility in the following solvents: N,N‐dimethylformamide, tetrahydrofuran, tetrachloroethane, dimethyl sulfoxide, N,N‐dimethylacetamide, N‐methyl‐2‐pyrrolidinone, m‐cresol, o‐chlorophenol, and chloroform. The polymers showed glass‐transition temperatures between 166 and 226°C. The 10% weight loss temperatures of the poly(ester‐imide)s, measured by TGA, were found to be in the range between 415 and 456°C in nitrogen. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2486–2493, 2004  相似文献   

9.
A new class of optically active poly(amide‐imide‐urethane) was synthesized via two‐step reactions. In the first step, 4,4′‐methylene‐bis(4‐phenylisocyanate) (MDI) reacts with several poly(ethylene glycols) (PEGs) such as PEG‐400, PEG‐600, PEG‐2000, PEG‐4000, and PEG‐6000 to produce the soft segment parts. On the other hand, 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine‐p‐amidobenzoic acid) (2) was prepared from the reaction of 4,4′‐(hexafluoroisopropylidene)‐N,N′‐bis(phthaloyl‐L ‐leucine) diacid chloride with p‐aminobenzoic acid to produce hard segment part. The chain extension of the above soft segment with the amide‐imide 2 is the second step to give a homologue series of poly(amide‐imide‐urethanes). The resulting polymers with moderate inherent viscosity of 0.29–1.38 dL/g are optically active and thermally stable. All of the above polymers were fully characterized by IR spectroscopy, elemental analyses, and specific rotation. Some structural characterization and physical properties of this new optically active poly(amide‐imide‐urethanes) are reported. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2288–2294, 2004  相似文献   

10.
A CF3‐containing diamine, 4,4′‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzophenone ( 2 ), was synthesized from 4,4′‐dihydroxybenzophenone and 2‐chloro‐5‐nitrobenzotrifluoride. Imide‐containing diacids ( 3 and 5Ba – 5Bg ) were prepared by the condensation reaction of aromatic diamines and trimellitic anhydride. Then, two series of novel soluble aromatic poly(amide imide)s (PAIs; 6Aa – 6Ak and 6Ba – 6Bg ) were synthesized from a diamine ( 4Aa – 4Ak or 2 ) with the imide‐containing diacids ( 3 and 5Ba – 5Bg ) via direct polycondensation with triphenyl phosphate and pyridine. The aromatic PAIs had inherent viscosities of 0.74–1.76 dL/g. All of the synthesized polymers showed excellent solubility in amide‐type solvents, such as N‐methyl‐2‐pyrrolidone and N,N‐dimethylacetamide (DMAc), and afforded transparent and tough films by DMAc solvent casting. These polymer films had tensile strengths of 90–113 MPa, elongations at break of 8–15%, and initial moduli of 2.0–2.9 GPa. The glass‐transition temperatures of the aromatic PAIs were in the range 242–279°C. They had 10% weight losses at temperatures above 500°C and showed excellent thermal stabilities. The 6B series exhibited less coloring and showed lower yellowness index values than the corresponding 6A series. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:3641–3653, 2006  相似文献   

11.
A series of polyamides and poly(amide‐imide)s was prepared by direct polycondensation of ether and nitrile group containing aromatic diamines with aromatic dicarboxylic acids and bis(carboxyphthalimide)s respectively in N‐methyl 2‐pyrrolidone (NMP) using triphenyl phosphite and pyridine as condensing agents. New diamines, such as 2,6‐bis(4‐aminophenoxy)benzonitrile and 2,6‐bis(3‐aminophenoxy)benzonitrile, were prepared from 2,6‐dichlorobenzonitrile with 4‐aminophenol and 3‐aminophenol, respectively, in NMP using potassium carbonate. Bis(carboxyphthalimide)s were prepared from the reaction of trimellitic anhydride with various aromatic diamines in N,N′‐dimethyl formamide. The inherent viscosities of the resulting polymers were in the range of 0.27 to 0.93 dl g?1 in NMP and the glass transition temperatures were between 175 and 298 °C. All polymers were soluble in dipolar aprotic solvents such as dimethylsulfoxide, dimethylacetamide and NMP. All polymers were stable up to 350 °C with a char yield of above 40 % at 900 °C in nitrogen atmosphere. All polymers were found to be amorphous except the polyamide derived from isophthalic acid and the poly(amide‐imide)s derived from diaminodiphenylether and diaminobenzophenone based bis(carboxyphthalimide)s. Copyright © 2004 Society of Chemical Industry  相似文献   

12.
A new indane containing unsymmetrical diamine monomer ( 3 ) was synthesized. This diamine monomer leads to a number of novel semifluorinated poly (ether imide)s when reacted with different commercially available dianhydrides like benzene‐1,2,4,5‐tetracarboxylic dianhydride (PMDA), benzophenone‐3,3′, 4,4′‐tetracarboxylic dianhydride (BTDA), 4,4′‐(hexafluoro‐isopropylidene)diphthalic anhydride (6FDA), 4,4′‐oxydiphthalic anhydride (ODPA), and 4,4′‐(4,4′‐Isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) by thermal imidization route. All the poly(ether imide)s showed excellent solubility in several organic solvents such as N‐methylpyrrolidone (NMP), N,N‐dimethylformamide (DMF), N,N‐dimethylacetamide (DMAc), tetrahydrofuran (THF), chloroform (CHCl3) and dichloromethane (DCM) at room temperature. These light yellow poly (ether imide)s showed very low water absorption (0.19–0.30%) and very good optical transparency. Wide angle X‐ray diffraction measurements revealed that these polymers were amorphous in nature. The polymers exhibited high thermal stability up to 526°C in nitrogen with 5% weight loss, and high glass transition temperature up to 265°C. The polymers exhibited high tensile strength up to 85 MPa, modulus up to 2.5 GPa and elongation at break up to 38%, depending on the exact polymer structure. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A new diacid containing optically active functional groups, N,N′‐(4,4′‐diphthaloyl)‐bis‐L ‐leucine diacid ( 3 ), was synthesized and used in a preparation of a series of poly(amide‐imide)s (PAIs) by direct polycondensation with various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP). All polymers derived from diacid ( 3 ) were highly organosoluble in the solvents like N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, γ‐butyrolactone, cyclohexanone, and chloroform at room temperature or upon heating. Inherent viscosities of the PAIs were found to range between 0.34 and 0.61·dL g?1. All the PAIs afforded flexible and tough films. The glass‐transition temperatures of these PAIs were recorded between 212 and 237°C by differential scanning calorimetry, and the 10% weight loss temperatures were ranging from 372 to 393°C and 336–372°C under nitrogen and air, respectively. The polyimide films had a tensile strength in the range of 63–88 MPa and a tensile modulus in the range of 1.2–1.7 GPa. Optically active PAIs exhibited specific rotations in the range of ?10.58° to ?38.70°. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

14.
A new diimide–diacid monomer, N,N′‐bis(4‐carboxyphenyl)‐4,4′‐oxydiphthalimide (I), was prepared by azeotropic condensation of 4,4′‐oxydiphthalic anhydride (ODPA) and p‐aminobenzoic acid (p‐ABA) at a 1:2 molar ratio in a polar solvent mixed with toluene. A series of poly(amide–imide)s (PAI, IIIa–m) was synthesized from the diimide–diacid I (or I′, diacid chloride of I) and various aromatic diamines by direct polycondensation (or low temperature polycondensation) using triphenyl phosphite and pyridine as condensing agents. It was found that only IIIk–m having a meta‐structure at two terminals of the diamine could afford good quality, creasable films by solution‐casting; other PAIs III using diamine with para‐linkage at terminals were insoluble and crystalline; though IIIg–i contained the soluble group of the diamine moieties, their solvent‐cast films were brittle. In order to improve their to solubility and film quality, copoly(amide–imide)s (Co‐PAIs) based on I and mixtures of p‐ABA and aromatic diamines were synthesized. When on equimolar of p‐ABA (m = 1) was mixed, most of Co‐PAIs IV had improved solubility and high inherent viscosities in the range 0.9–1.5 dl g?1; however, their films were still brittle. With m = 3, series V was obtained, and all members exhibited high toughness. The solubility, film‐forming ability, crystallinity, and thermal properties of the resultant poly(amide–imide)s were investigated. © 2002 Society of Chemical Industry  相似文献   

15.
Eight new flame‐retardant poly(amide‐imide)s with high inherent viscosities containing phosphine oxide moieties in main chain were synthesized from the polycondensation reaction of N,N′‐(3,3′‐diphenylphenylphosphine oxide) bistrimellitimide diacid chloride 7, with eight ;aromatic diamine 8a–h by two different methods such as solution and microwave‐assisted polycondensation. Results showed that the microwave‐assisted polycondensation by using a domestic microwave oven proceeded rapidly, compared with solution polycondensation and were completed within about 10–12 min. The resulting poly(amide‐imide)s 9a–h showed high thermal stability and flame‐retardant properties. All of the obtained polymers were fully characterized by means of elemental analysis, viscosity measurements, solubility test, and FTIR spectroscopy. Thermal properties of the PAIs 9a–h were investigated by using thermal gravimetric analysis (TGA), derivative thermogravimetric analysis (DTG), and differential scanning calorimetry (DSC). Char yield measurements at 600°C demonstrated that incorporating phosphine oxide moieties in polymer backbone markedly improves their flame retardancy. All of the earlier polymers were soluble at room temperature in various organic solvents such as NMP, DMF, DMSO, DMAc, and concentrated sulfuric acid. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4263–4269, 2006  相似文献   

16.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

17.
Three series of isomeric poly(amide imide)s (series III, IV, and V) were synthesized by the direct polycondensation of 2,2′‐bis(4‐aminophenoxy)biphenyl (2,2′‐BAPB), 4,4′‐bis(4‐aminophenoxy)biphenyl (4,4′‐BAPB), or their equimolar mixture (2,2′‐BAPB/4,4′‐BAPB = 1/1) with 12 diimide diacids and with triphenyl phosphite and pyridine as condensing agents. A comparison of the physical properties of these three series was also made. The inherent viscosities of series III, IV, and V were 0.25–0.84, 0.25–1.52, and 0.43–1.30 dL g?1, respectively. Most of the series III polymers showed better solubility because of the non‐para structure, with the solubility order found to be III > V > IV. According to X‐ray diffraction patterns, the amorphous poly(amide imide)s had excellent solubility, whereas the crystalline polymers were less soluble. All the soluble polymers afforded transparent, flexible, and tough films, which had tensile strengths of 57–104 MPa, elongations at break of 3–20%, and initial moduli of 2.05–2.86 GPa. The glass‐transition temperatures (measured by differential scanning calorimetry) were highest for series IV, which contained the rigid 4,4′‐biphenyl units (254–299°C); copolymer series V ranked second (237–277°C), and series III, with crank 2,2′‐biphenyl structures, had the lowest values (227–268°C). The 10% weight‐loss temperatures (measured by thermogravimetric analysis) were close to one another, ranging from 527 to 574°C in nitrogen and from 472 to 543°C in air. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2763–2774, 2002  相似文献   

18.
A series of aromatic poly(amide imide)s containing pendant phthalonitrile groups was prepared by solution polycondensation reaction of 4,4′‐diamino‐4″‐(3,4‐dicyanophenoxy)triphenylmethane, 1, or of different amounts of 1 and 1,3‐bis(4‐aminophenoxy)benzene, with a fluorinated imide diacid chloride, 2,2‐bis[N‐(4‐chloroformylphenyl)phthalimidyl]hexafluoroisopropane. The polymers were easily soluble in polar organic solvents, such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethylsulfoxide. They can be cast from solutions into thin flexible films showing nanoactuation properties in the range of 120–450 nm, depending on the nitrile group content, when an electric voltage is applied on their surface. Electrical insulating properties of the polymer films were evaluated on the basis of dielectric permittivity and dielectric loss and their variation with the frequency and temperature. The values of the dielectric permittivity at 10 kHz and 20°C were in the range of 3.01–3.43. All polymers exhibited high thermal stability, decomposition temperature being above 420°C. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

19.
A new imide‐containing dicarboxylic acid based on a twisted binaphthylene unit, 2,2′‐bis(N‐trimellitoyl)‐1,1′‐binaphthyl (1), was synthesized from 1,1′‐binaphthyl‐2,2′‐diamine and trimellitic anhydride in glacial acetic acid. The structure of compound 1 was fully characterized with spectroscopic methods and elemental analysis. Series of thermally stable and organosoluble poly(amide imide)s (4a–4d) and poly(ester imide)s (5a–5d) with similar backbones were prepared by the triphenyl phosphite and diphenylchlorophosphate activated direct polycondensation of diimide dicarboxylic acid 1 with various aromatic diamines and diols, respectively. With due attention to the structural similarity of the resulting poly(amide imide)s and poly(ester imide)s, most of the differences between these two block copolyimides could be easily attributed to the presence of alternate amide or ester linkages accompanied by imide groups in the polymer backbone. The ultraviolet maximum wavelength values of the yellowish polymers were determined from their ultraviolet spectra. The crystallinity of these copolyimides was estimated by means of wide‐angle X‐ray diffraction, and the resultant polymers exhibited a nearly amorphous nature, except for the polymers derived from benzidine and 4,4′‐binaphthol. The poly(amide imide)s exhibited excellent solubility in a variety of highly polar aprotic solvents, whereas the poly(ester imide)s showed good solubility in less polar solvents. According to differential scanning calorimetry analyses, polymers 4a–4d and 5a–5d had glass‐transition temperatures between 331 and 357°C and between 318 and 342°C, respectively. The thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis, and the 10% weight loss temperatures of the poly(amide imide)s and poly(ester imide)s were between 579 and 604°C and between 566 and 577°C in nitrogen, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3203–3211, 2006  相似文献   

20.
Several new poly(amide imide)s were synthesized through the polycondensation reactions of bis(4‐trimellitimidophenyl) sulfone [N,N′‐(4,4′‐diphenylsulfone) bistrimellitimide] with a number of hydantoin derivatives in a medium consisting of thionyl chloride, N‐methyl‐2‐pyrrolidone, and pyridine. The polycondensations produced a series of novel poly(amide imide)s in high yields with inherent viscosities of 0.20–0.46 dL/g. The resulting poly(amide imide)s were characterized with elemental analysis, viscosity measurements, thermogravimetric analysis, derivative thermogravimetry, solubility testing, and Fourier transform infrared spectroscopy. All the polymers were soluble at room temperature in polar solvents such as N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, and N‐methyl‐2‐pyrrolidone. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1776–1782, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号