首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two types of bisphenol monomers, Bisphenol A (BPA) and Tetramethyl Bisphenol A (TMBPA), with different concentrations of bisphenol aqueous solution (0.5% to 2.%w/v) and various interfacial polymerisation times (10 s, 30 s and 60 s) in the fixed 0.15%w/v organic solution of trimesoyl chloride (TMC)-hexane were studied. Irreversible fouling of both unmodified polyethersulfone NFPES10 and modified polyester thin-film composite polyethersulfone membranes were studied using humic acid model solutions at two different pH values, pH 7 and pH 3. It was observed that polyester thin-film composite membranes prepared by BPA exhibited fewer tendencies for irreversible fouling by humic acid molecules at neutral environment compared to unmodified NFPES10 and TMBPA-polyester series. This is most probably due to high electrostatic repulsion force between negatively charged of BPA-polyester layer and highly negative charged of humic acid at pH7. However, some modified membranes with rougher surfaces were severely fouled by humic acid molecules at acidic environment, pH 3. Under this acidic environment, carboxylic acid groups of humic acid lost their charge and the macromolecules of humic acid have smaller macromolecular configuration due to the increased hydrophobicity and reduced inter-chain electrostatic repulsion. Thus the molecules of humic acid may be preferentially accumulated at the valleys of the rougher membrane surface blocking them and resulting in a more severe fouling. In addition, the modification also affected membrane pore size and pore size distribution as shown by AFM images. It was also observed that the smaller pore size generated after modification does not have significant effect on humic acid removal due to the larger size of humic acid molecules. All the modified membranes posses smaller pore size than the unmodified NFPES10 (1.47 nm) in the range of 0.8–1.34 nm.  相似文献   

2.
Surface‐modifying macromolecules (SMMs) are oligomeric fluoropolymers synthesized by polyurethane chemistry and tailored with fluorinated end groups. In the literature, several formulations of SMMs have been developed and blended with base polymers of polyurethanes and polyethersulfone for surface modification. It has been shown that SMMs migrate to the surface and the fluorine end groups orient themselves toward the air–polymer interface, reducing the surface energy of the hydrophilic base polymer to values close to that of polytetrafluoroethylene (Teflon). Because only a small amount of SMMs was needed, the bulk properties of the base polymer remained relatively unchanged. The properties of the SMM polymers were characterized, including molecular weights, elemental analysis, and thermal transitions. The morphology and surface properties of the SMM‐modified and unmodified membranes were assessed. The use of SMMs has been tested for use in ultrafiltration, pervaporation, and biomedical applications. SMM‐modified membranes offer advantages over unmodified membranes and the use of SMMs will continue to be the focus of future studies. This study reviews the recent development of surface‐modifying macromolecules (SMMs) and SMM‐blended membranes. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2902–2916, 2003  相似文献   

3.
Chlorinated poly(vinyl chloride) (CPVC) membranes for microfiltration processes were prepared with the combined process of a solvent evaporation technique and the water‐vapor induced‐phase‐inversion method. CPVC membranes with a mean pore size of 0.7 μm were very hydrophobic. These membranes were subjected to surface modification by ultraviolet (UV)‐assisted graft polymerization with N‐vinyl‐2‐pyrrolidinone (NVP) to increase their surface wettability and decrease their adsorptive fouling. The grafting yields of the modified membranes were controlled by alteration of UV irradiation time and NVP monomer concentration. The changes in chemical structure between the CPVC membrane and the CPVC‐g‐poly(N‐vinyl‐2‐pyrrolidinone) membrane and the variation of the topologies of the modified PVC membranes were characterized by Fourier transform infrared spectroscopy, gel permeation chromatography, and field emission scanning electron microscopy. According to the results, the graft yield of the modified CPVC membrane reached a maximum at 5 min of UV exposure time and 20 vol % NVP concentration. The filtration behavior of these membranes was investigated with deionized water by a crossflow filtration measurement. The surface hydrophilicity and roughness were easily changed by the grafting of NVP on the surface of the CPVC membrane through a simultaneous irradiation grafting method by UV irradiation. To confirm the effect of grafting for filtration, we compared the unmodified and modified CPVC membranes with respect to their deionized water permeation by using crossflow filtration methods. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3188–3195, 2003  相似文献   

4.
For enhanced antifouling surface properties, the alumina membranes were modified through a simple silanization process. Three organosilanes presenting neutral, positive, and negative charges were allowed to graft onto alumina membranes. A small decrease in the pore size and the successful chemical binding of organosilanes were confirmed, respectively. The membrane filtration test using humic acid (HA) was conducted to evaluate the effect of surface charges on fouling resistance. The neutral and negatively charged membranes achieved remarkable flux behaviour due to no charge interaction and electrostatic repulsion force, respectively. Especially, the negatively charged membranes presented the lowest flux decline, the highest flux recovery, and the lowest membrane fouling.  相似文献   

5.
Surface modification is an effective approach to enhance the properties of polymeric membranes. In this work, the UV‐photo‐induced graft polymerization of acrylic acid (AA) onto the surfaces of polyamide thin film composite (TFC‐PA) membranes was carried out using an immersion method performed under ambient conditions. The experimental results indicate that the membrane surface becomes more hydrophilic because of the appearance of new carboxylic groups on the surface after the modification. This reduces the water contact angle and increases the water permeability compared with the unmodified membrane. The membrane surface is relatively compact and smooth due to the formation of the polymeric AA‐grafted layer. The separation performance of the modified membrane is improved with enhancements of the permeate flux and the retention of humic acid from aqueous feed solutions compared with those of the unmodified membrane. The fouling resistance of the membrane is also improved because of the higher maintained flux ratios and the lower irreversible fouling factors for the removal of various organic compounds from feed solutions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44418.  相似文献   

6.
In this work, the redox‐initiated graft polymerization of acrylic acid (AA) onto the surface of polyamide thin film composite membranes has been carried out to enhance membrane separation and antifouling properties. The membrane surface characteristics were determined through the attenuated total reflection Fourier transform infrared spectra, scanning electron microscopy, atomic force microscopy, and water contact angles. The membrane separation performance was evaluated through membrane flux and rejection of some organic compounds such as reactive red dye (RR261), humic acid, and bovine serum albumin in aqueous feed solutions. The experimental results indicated that the membrane surfaces became more hydrophilic and smoother after grafting of AA. The modified membranes have a better separation performance with a significant enhancement of flux at a great retention. The fouling resistance of the modified membranes is also clearly improved with the higher maintained flux ratio and the lower irreversible fouling factor compared to the unmodified one. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45110.  相似文献   

7.
Polyethersulfone (PES) was modified by blending it with polyaniline (PANI) nanoparticles to improve the membrane performance. Three types of membranes: PES (controlled sample), PES-PANI self-synthesised, and PES-PANI (commercial), were evaluated by direct interaction with BSA, humic acid, silica nanoparticles, Escherichia coli and Bacillus bacteria. The surface hydrophilicity of the modified PES membranes was enhanced by the addition of PANI nanoparticles and showed improved fouling resistance and a high flux recovery ratio as well as improvement in BSA and humic acid rejection even with higher pore sizes. The modified membrane also showed less attack from the bacteria, demonstrating improved biofouling activity.  相似文献   

8.
Polysulfone membranes were prepared via phase inversion technique by using polyethylene glycol with molecular weights of 400, 1500 and 6000 Da as pore forming agent in dope formulation. The performance of membrane was characterized using humic acid and water sample taken from Sembrong River, Johor, Malaysia was used as natural organic matter sources. Membrane properties were also characterized in terms of mean pore radius, pure water flux, humic acid rejection and fouling resistance. The results indicated that the pure water flux and mean pore radius of membranes increased with the increase of PEG content. Fourier transform infrared spectroscopy results revealed the presence of hydrophilic component in PSf/PEG blend with the significant appearance of O–H peak at 3418.78 cm− 1. Scanning electron microscopy analysis revealed the presence of finger-like structure for all membranes and the structure intensified as PEG content was increased. The results obtained from the fouling study indicated that the membrane with the lowest PEG content and molecular weight has an excellent performance in mitigating fouling.  相似文献   

9.
Ceramic microfiltration membranes were prepared using five different compositions formulated with different amounts of fly ash and kaolin and sintered at 900 °C. The SEM analysis evidenced a large number of small pores on the surface of kaolin-rich membranes. The M4 membrane prepared using 25% fly ash and 50% kaolin was found to be optimum as it had a good combination of pore size (0.885 μm), porosity (42.7%), mechanical strength (43.6MPa), and chemical stability (<3% weight loss in acid and 0.02% in base), and this membrane was successfully applied in separation of humic acid from water. The permeate flux data fitted very closely with cake-filtration model, indicating the formation of a cake layer on membrane surface. Membrane fouling was found to be reversible and easily negated by cleaning and backflushing. The regenerated membrane showed better rejection of humic acid than fresh membrane with a flux recovery of above 80%.  相似文献   

10.
《分离科学与技术》2012,47(9):1209-1215
A poly(vinylidene fluoride) (PVDF) hollow fiber membrane surface was modified by alkaline treatment in this study. This subject was selected with the aim to confirm the mechanisms of alkaline degradation of PVDF membranes, characterize the variations of membrane surface morphology (e.g., average pore size, pore size distribution, porosity, etc.), and estimate the membrane fouling potential by a bench-scale test with synthetic surface water. The conditions of the alkaline treatment covered various concentrations, temperature, and processing time. The results of this study indicate that the hydrophilic PVDF membranes can be obtained after appropriate treatment without loss of integrity of the membrane surface. All factors, including the concentration of NaOH, temperature, and processing time affect membrane properties. The surface images and air flow rate of unmodified and modified membranes showed difference in their average pore size and pore size distribution. In general, the increase of the processing time decreases the average pore size at constant concentration and temperature; the increase of the NaOH concentration in solution and temperature fastens the degradation process. Membrane pure water flux decreased after alkaline treatment. This can be attributed to the decrease of pore size. However, the membrane anti-fouling potential increased after alkaline treatment due to the enhancement of hydrophilic property of membrane surface.  相似文献   

11.
研究了电场对超滤膜污染和去除性能的影响。结果表明,原水中的腐植酸在电场中发生电泳迁移,减少了向膜表面的移动,同时发生凝聚现象,沉积在膜表面形成疏松的滤饼层,有效的减缓了膜污染。经过与普通超滤膜过滤的平行试验比较得出,附加电场后对羟苯甲酮(BP-3)的去除率提高了70%~100%。同时发现,吸附是大孔径低压膜去除小分子BP-3的主要作用,水中腐植酸的存在对超滤去除BP-3有一定的促进作用。通过稀HCl、NaOH溶液浸泡和水力冲洗,可有效消除膜污染,使得膜过滤通量得到恢复。  相似文献   

12.
The fouling behavior of polyamide thin‐film composite (TFC) membranes modified with amino‐ and diethylamino‐cyclodextrins (CDs) through an in situ interfacial polymerization process is reported. Modified polyamide TFC membranes exhibited improved hydrophilicity, water permeability, and fouling resistance as compared to the unmodified TFC membranes, while restricting the passage of NaCl salt (98.46 ± 0.5%). The increase in hydrophilicity was attributed to the secondary and tertiary hydroxyl groups of the CDs, which were not aminated. The membranes modified with amino‐CDs had increased surface roughness while the membranes modified with diethylamino‐CDs had smoother surfaces. However, despite the surface roughness of the membranes modified with amino‐CDs, low fouling was observed due to the highly hydrophilic surfaces, which superseded the roughness. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40109.  相似文献   

13.
The surfaces of polysulfone and polyethersulfone ultrafiltration membranes were coated with polydopamine, yielding hydrophilic membranes that, under constant transmembrane pressure fouling conditions, have previously shown enhanced flux relative to unmodified membranes. When evaluated under constant permeate flux fouling, however, modified membranes exhibited higher transmembrane pressures than their unmodified analogs. This increased transmembrane pressure in the coated membranes was ascribed to the decrease in membrane permeance resulting from applying the polydopamine coating. The membrane permeance could be tuned by varying polydopamine deposition time and, even at the shortest deposition times studied here, a few minutes, a substantial increase in membrane hydrophilicity could be achieved. Therefore, polydopamine was deposited on a membrane of relatively high permeance until the pure water permeance of the modified membrane matched that of a membrane having lower native permeance, permitting a comparison of the fouling performance of a modified and unmodified membrane with the same pure water permeance. This approach was repeated, using a single, high permeance membrane as the base membrane for modification, to produce a family of modified membranes having the same initial pure water permeances as lower permeance, unmodified membranes. When unmodified and modified membranes of the same initial permeance were compared at constant flux fouling conditions, the modified membranes consistently exhibited lower transmembrane pressures and similar organic rejections to the unmodified membranes. Because many porous water purification membranes are operated at constant flux in industrial settings, an interesting methodology for membrane surface modification may be to surface-modify a membrane of high permeance until the desired permeance is achieved, rather than by surface modification of a membrane that natively has the desired water transport characteristics, since the surface modification procedures almost invariably lead to lower pure water permeance.  相似文献   

14.
The impact that some membrane preparation steps had on ultrafiltration (UF) membrane characteristics and performance was studied. Polyethersulfone (PES) was employed as base polymer, while N‐methyl pyrrolidone (NMP) was used as a solvent, and polyvinylpyrrolidone (PVP) was used as a nonsolvent pore‐forming additive. The manufacturing variables studied were solvent evaporation time and membrane surface modification, using a fluorine‐based copolymer referred to as surface‐modifying macromolecule (SMM). The flat sheet membranes, prepared via phase inversion, were characterized using solute transport data, X‐ray photoelectron spectroscopy (XPS), and contact angle measurements. Membrane performance was evaluated via filtration test protocol that included a 6‐day filtration of concentrated river water. The flux reduction with time was modeled using single and dual mechanisms of fouling. The pore blockage/cake filtration model described better the behavior of the permeation rate along the experiments. Increasing the solvent evaporation time decreased the size of the pores and the permeation rate. However, it did not significantly affect the removal of the organic compounds naturally present in the river water used as feed. XPS and contact angle measurements proved that the short evaporation periods did not allow enough SMM migration to the surface to provoke a significant effect on the membrane performance. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

15.
Poly(vinyl chloride) (PVC) was irradiated by electron beam in vacuum at 20 KGy to produce living free radicals, and then reacted with acrylic acid (AA) in solution to obtain the PVC‐g‐AA copolymers. The copolymers were characterized by Fourier transform infrared spectroscopy. Porous membranes were prepared from copolymers by the phase inversion technique. The morphology of PVC‐g‐AA membranes was studied by field emission scanning electron microscopy. The mean pore size and pore size distribution were determined by a mercury porosimeter. The mean pore size was 0.19 μm, and the bulk porosity was 56.02%. The apparent static water contact angle was 89.0°. The water drop penetration rate was 2.35 times to the original membrane. The maximum stress was 4.10 MPa. Filtration experiments were carried out to evaluate the fouling resistance of the PVC‐g‐AA membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

16.
Fouling characteristics of membranes with various molecular weight cut-offs (MWCO) were investigated. The effects of the molecular weights (MW) of humic acids and pre-treatment with PAC on membrane fouling were studied. It was found that the hydraulic resistance caused by fouling materials calculated using cake resistance in series model is a better indicator than the percentage of flux decline to assess the fouling of membranes with various MWCO. The effects of MWCO of membranes and MW of humic acids on membrane fouling can be explained by the different types of fouling mechanisms.  相似文献   

17.
The fouling of ultrafiltration membrane is often caused by gel formation on the membrane surface. This gel layer arises due to concentration polarization or macromolecular adsorption on the membrane surface. The gel layer affects both the hydraulic permeability and the rejection properties of the membrane. In this report, the adsorption of porcine albumin and the concentration polarization effect on modified and unmodified polyethersulfone (PES) hollow-fiber membrane is studied. PES ultrafiltration hollow-fiber membranes were modified by the grafting of polyethylene glycol (PEG) polymer on the internal surface using γ-ray irradiation method. The modified hollow fibers were less susceptible to fouling than were the unmodified fiber. The performance of both modified and unmodified hollow fibers was tested as a function of feed flow rates and protein concentrations. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
许锡恩 《化工学报》1998,49(6):745-749
引言工业生产中经常会遇到醇水混合物的分离问题.膜分离技术与传统的分离过程相比,具有设备简单、操作容易、能耗低和无污染等优点,因此,用经济的膜技术进行醇水混合物分离和浓缩的研究具有广阔的应用前景.其中,采用气相进料的蒸汽渗透膜技术在有机溶剂-水混合物的分离方面显示出明显的竞争优势[1-3].已报道的用于醇水混合物分离的膜以有机聚合物膜居多.有机膜虽然选择性较高,但其渗透通量却难以满足实际生产的需要.无机陶瓷膜通量大,其选择性则取决于膜孔的大小与结构.为了提高陶瓷膜的选择性,涌现出许多减小膜孔径和改善膜…  相似文献   

19.
A charged surface modifying macromolecule (cSMM) was synthesized, characterized by FT-IR spectroscopy and blended into the casting solution of cellulose acetate (CA) to prepare surface modified UF membranes by phase inversion technique. With an increasing cSMM additive content from 1 to 4 wt%, pure water flux (PWF) and water content (WC) were increases whereas the hydraulic resistance decreases. Surface characteristic study reveals that the surface hydrophilicity increased in cSMM modified CA membranes. The pore size and surface porosity of the 4 wt% cSMM blend CA membranes increases to 41.26 Å and 0.015%, respectively. Similarly, the molecular weight cut-off (MWCO) of the membranes ranged from 20 to 45 kDa, depending on the various compositions of the prepared membranes. Lower flux decline rate (47.2%) and higher flux recovery ratio (FRR) (89.0%), exhibited by 4 wt% cSMM blend membranes demonstrated its fouling resistant characteristic compared to pristine CA membrane.  相似文献   

20.
Commercial 50 and 100 kD polyethersulfone (PES) and polysulfone (PS) ultrafiltration membranes were surface modified by UV photografting of poly(ethylene glycol) methacrylate (PEGMA) monomer. The modified membranes were characterized by the degree of grafting, water flux and molecular weight cutoff (MWCO) rating. The flux and fouling of the modified and unmodified membranes were examined with sugarcane juice and its polysaccharide fraction. Under the conditions of this study, the modified membranes displayed a low degree of grafting (26-36 μg/cm2), which was independent of the UV exposure duration; however, both membrane water flux and MWCO rating were affected by the irradiation time. In the best case, the modified membranes exhibited lower fouling with sugarcane juice; furthermore, the propensity to foul also decreased. More significantly, juice flux recovery was almost complete for successive UF-cleaning cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号