首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temperature‐responsive semi‐interpenetrating polymer networks (semi‐IPNs) constructed with chitosan and polyacrylonitrile (PAN) were crosslinked with glutaraldehyde. The semi‐IPN determined the sorption behavior of water at several temperatures and at a relative humidity (RH) of 95% using a dynamic vapor sorption (DVS) system. Water diffusion coefficients of semi‐IPNs were calculated according to the Fickian Law at several temperatures and exhibited a relatively water uptake, 0.1–0.4 at room temperature. The water uptake of hydrogels depended on temperature. The apparent activation energy was dependent of the composition of the semi‐IPN with value of 32.8–34.8 kJmol?1. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2721–2724, 2003  相似文献   

2.
A novel semi‐interpenetrating polymer network (semi‐IPN) hydrogel composed of chitosan and poly(methacrylic acid) was synthesized using formaldehyde as a crosslinker. The amount of crosslinker was searched and optimized. The structure of the hydogel was investigated by Fourier transform infrared (FTIR) spectroscopy. The spectrum shows that a structure of polyelectrolyte complex exists in the hydrogel. The effects of pH, ionic strength, and inorganic salt on the swelling behaviors of the hydrogel were studied. The results indicate the hydrogel has excellent pH sensitivity in the range of pH 1.40 to 4.50, pH reversible response between pH 1.80 and 6.80, and ionic strength reversible response between ionic strength 0.2 and 2.0M. The results also show that the hydrogel has a bit higher swelling capacity in a mix solution of calcium chloride (CaCl2) and hydrochloric acid (HCl) solution than in a mix solution of sodium chloride (NaCl) and HCl. These results were further confirmed through morphological change measured by scanning electron microscope (SEM). © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1720–1726, 2005  相似文献   

3.
Semi‐interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that its major constituent sugar was xylose. X‐ray analysis showed that the relative crystallinity of hydrogels increased with increasing hemicellulose content up to 31.3%. Strong intermolecular interactions between chitosan and hemicellulose were evidenced by FT‐IR analysis. Quantitative analysis of free amino groups showed that hemicellulose could interrupt the chemical crosslinking of chitosan macromolecules. Mechanical testing and swelling experiments were used to define the effective network crosslink density and average molecular weight between crosslinks. Swelling ratios increased with increasing hemicellulose content and mainly consisted of H‐bonded bound water. Results revealed that by altering the hydrogel preparation steps and hemicellulose content, crosslink density and swelling behavior of semi‐IPN hydrogels could be controlled without deteriorating their mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Semi‐interpenetrating polymer networks (semi‐IPNs), composed of chitosan and poly(hydroxy ethyl methacrylate) hydrogels, were prepared and the effects of various pH, temperatures, and an electric‐field on the swollen hydrogels were investigated. The swelling kinetics increased rapidly, reaching equilibrium within 60 min. Semi‐IPN hydrogels exhibited relatively high swelling ratios, 150~350%. The swelling ratio increased when the pH of the buffer was below pH 7 as a result of the dissociation of ionic bonds. Semi‐IPN hydrogels showed electroresponsiveness by shrinking when an electric field was applied. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 86–92, 2005  相似文献   

5.
Interpenetrating polymer network (IPN) hydrogels composed of poly(2‐ethyl‐2‐oxazoline) (PEtOz) and chitosan (CS) were prepared with radical polymerization and were characterized for their swelling properties. Sample OC11 (hydrogel weight ratio PEtOz/CS = 1/1) swelled more than samples OC21 (PEtOz/CS = 2/1) and OC31 (PEtOz/CS =3/1), exhibiting a swelling ratio of about 2000 wt % in deionized water; the swelling ratios of the other samples were about 1000 and 700 wt %. The swelling behavior of the IPN hydrogels was observed under various pH and temperature conditions. The swelling ratios of the samples ranged from about 2000 to 6500 wt % at lower pHs, with a maximum swelling ratio of about 6500 wt % in a pH 2 aqueous solution. They exhibited low critical solution temperature behavior, with sample OC31 more sensitive to temperature and sample OC11 more sensitive to pH. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1100–1103, 2006  相似文献   

6.
A series of novel hydrogels were prepared from acrylic acid (AA), N‐vinyl pyrrolidone (NVP), and chitosan by photopolymerization. The swelling behavior, gel strength, and drug release behavior of the poly(AA/NVP) copolymeric hydrogels and corresponding interpenetrating polymer network hydrogels were investigated. Results showed that the swelling ratios for the present hydrogels decreased with an increase of NVP content in the gel, but the gel strength increased with an increase of NVP content in the gel. Results also showed that the drug‐release behavior for the gels is related to the ionicity of drug and the swelling ratio of the gel. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2135–2142, 2004  相似文献   

7.
For to be used in controlled releasing of piperacillin‐tazobactam, a series of semi and full IPN type hydrogels composed of acrylic acid (AA), acrylamide (AAm) and Chitosan (CS) were prepared via free‐radical polymerization. Ethylene glycol dimethacrylate (EGDMA) was used for crosslinking of PAAm and PAA chains to form semi‐IPN hydrogels. However, the full‐IPN type hydrogels were prepared by using glutaraldehyde (GA) and EGDMA as cocrosslinkers. Characteristics of the hydrogels were investigated by swelling experiments and SEM and FTIR analysis. Generally, full‐IPN type hydrogels swell much more than the semi‐IPN types. By comparing the full‐IPN type hydrogels in between, it is found that the increasing amount of GA causes the decreasing in S% values from 4860 to 4300%. Releasing of piperacillin‐tazobactam from selected three hydrogels were investigated in phosphate buffer solution at pH = 7.4, 37°C. The kinetic release parameters, n and k were calculated and non‐Fickian type diffusion was established for these hydrogels. The behaviors of the piperacillin‐tazobactam loaded hydrogels in Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) culture suspensions were also studied and the statistically significant differences for the microorganism growth values were determined. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
Gelatin and DNA were mixed together in various ratios followed by the addition of glutaraldehyde as a cross‐linker. FT‐IR spectroscopy confirmed the formation of a semi‐interpenetrating polymer network (semi‐IPN) between the gelatin and DNA. The gelatin–DNA semi‐IPN hydrogel underwent, reversibly, remarkable changes in swelling degree in response to the variation of pH. In the low‐pH range, the hydrogel showed a lower swelling degree; with an increment in pH, the hydrogel was highly swollen, which is considered to originate from the complexation and de‐complexation between gelatin and DNA, as was verified by turbidity measurements. Higher contents of DNA result in an increase in the swelling degree, which is presumably due to the easy outward expansion of free DNA moieties. The permeability coefficient, P, for a model molecule, cimetidine, through the semi‐IPN hydrogel membranes was determined in pH 1.0 and pH 12.0 buffer solutions. The results show that the permeation of cimetidine is responsive to pH change, and an evident variation in the P values occurs in response to the pH of the media. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
Poly(vinyl alcohol) (PVA)/chitosan interpenetrating polymer networks (IPN) were prepared by UV irradiation. The water sorption behavior of the IPNs was measured at various temperatures and humidity levels. The water uptake of IPN13 is greater than that of other IPNs. Vapor sorption behavior is more affected by the density of water vapor than by hydrophilic properties with increasing temperature. Equilibrium water uptake increases as humidity increases, and the increase is more noticeable at high humidity. The sorption system of all IPNs is a relaxation‐controlled mechanism at a relative humidity (RH) of 90%, but it is a Fickian diffusion‐controlled mechanism when the RH is below 50%. With an increase in humidity, the diffusion coefficients were found to increase due to greater penetration of water into the IPNs. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 86–90, 2003  相似文献   

10.
A novel semi‐interpenetrating (semi‐IPN) graft copolymer of 2‐hydroxyethyl methacrylate (HEMA) with chitosan (CS) has been prepared in the form of microspheres, using water‐in‐oil (W/O) emulsion technique. Microspheres were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X‐ray diffractometry (X‐RD) to confirm the crosslinking and polymorphism of indomethacin (IDM). The X‐RD and DSC techniques indicated a molecular‐level dispersion of IDM in the IPN matrix. Scanning electron micrographs (SEM) taken at the cross section of the microspheres have shown rough surfaces around the microspheres. The sustained release characteristics of the matrices for IDM, an anti‐inflammatory drug, were investigated in pH 7.4 media. Particle size and size distribution of the microspheres were studied by laser light diffraction particle size analyzer. The drug was released in a sustained manner for up to 12 h. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

11.
Semi‐interpenetrating polymer networks (semi‐IPNs) composed of poly(dimethyl–aminoethyl methacrylate) (PDMAEMA) and poly(ethylene oxide) (PEO) were synthesized by γ‐radiation; three semi‐IPNs with 80 : 20, 90 : 10, and 95 : 5 weight ratios of DMAEMA/PEO were obtained by use of this technique. The gel–dose curves showed that the hydrogels were characterized by a structure typical of semi‐IPNs and the results of elemental analysis supported this point. The temperature‐induced phase transition of semi‐IPNs with the composition of 95 : 5 was still retained, with the lower critical solution temperature of PDMAEMA shifting from 40 to 27°C. The temperature sensitivity of the other two semi‐IPNs gradually disappeared. The pH sensitivity of three semi‐IPNs was still retained but the pH shifted slightly to lower values with increasing PEO content in the semi‐IPNs. The effect of PEO content in semi‐IPNs on their environmental responsiveness was discussed. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2995–3001, 2004  相似文献   

12.
The enzymatic degradation mechanism of semi‐interpenetrating network (semi‐IPN) hydrogel of poly (acrylic acid‐acrylamide‐methacrylate) crosslinked by azocompound and amylose in vitro was investigated in the presence of Fungamyl 800L (α‐amylase) and rat cecum content (cecum bacteria). The degradation mechanism involves degradable competition, i.e., reduction of azo crosslinkage is dominant in the earlier period of degradation. Subsequently, the degradation of gels is continued by combination of reduction of azo crosslinkage and hydrolysis of amylose. The cumulative release ratios of Bovine serum albumin (BSA, as a model drug) loaded semi‐IPN gels are 25% in pH 2.2 buffer solutions and 74% in pH 7.4 buffer solutions within 48 h. Moreover, the release behavior of BSA from the semi‐IPN gels indicates that it follows Fickian diffusion mechanism in pH 2.2 media and non‐Fickian diffusion and polymer chains relaxation mechanism in pH 7.4 media. The results indicate that the release of BSA from the semi‐IPN gels was controlled via a combined mechanism of pH dependent swelling and specificity to enzymatic degradation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
In this study, pH‐ and temperature‐responsive hydrogels based on linear sodium alginate (SA) and crosslinked poly(N‐isopropylacrylamide) (PNIPAAm) were prepared by semi‐interpenetrating network (semi‐IPN) technique. The dually responsive hydrogels were characterized by FTIR, DSC, and SEM, and their temperature‐ and pH‐responsive behaviors were investigated by measuring equilibrium swelling ratios and pulsatile swelling experiments. The results showed that these hydrogels underwent volume phase transition at around 33°C irrespective of the pH value of the medium, but their pH sensitivity was evident only below their volume phase transition temperature. Under basic conditions, the swelling ratios of SA/PNIPAAm semi‐IPN hydrogels were greater than that of pure PNIPAAm hydrogel and increased with increasing SA content incorporated into the hydrogels, but the case was inverse under acidic conditions. The pulsatile swelling experiments indicated that the higher the SA content in SA/PNIPAAm semi‐IPN hydrogels, the faster the response rate to both pH and temperature change. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1931–1940, 2005  相似文献   

14.
Interpenetrating polymer network (IPN) hydrogels based on poly(vinyl alcohol) and 1‐vinyl‐2‐pyrrolidone were prepared by radical polymerization with 2,2‐dimethoxy‐2‐phenylacetophenone as a photoinitiator and N,N′‐methylenebisacrylamide as a crosslinker. The IPN hydrogels were analyzed for the sorption behavior of water at 35°C and a relative humidity of 95% with a dynamic vapor sorption system, and water diffusion coefficients were calculated. Differential scanning calorimetry was used to quantitatively determine the amounts of freezing and nonfreezing water. The free‐water contents in the IPN hydrogel samples PV51, PV31, and PV11 were 74.40, 64.03, and 60.48% in pure water, respectively. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 24–27, 2003  相似文献   

15.
Temperature‐ and pH‐responsive semiinterpenetrating polymer network (SIPN) hydrogels, constructed with chitosan (CS) and poly(diallyldimethylammonium chloride) (PDADMAC), were studied. The characterizations of the IPN hydrogels were investigated by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and swelling tests, under various conditions. CS/PDADMAC SIPN hydrogels exhibited a relatively high swelling ratio, in the range of 248–462%, at 25°C. The swelling ratio of CS/PDADMAC IPN hydrogels are pH, temperature, and ionic concentration dependent. DSC was used for the quantitative determination of the amounts of freezing and nonfreezing water. The amount of free water increased with increasing PDADMAC content in the IPN hydrogels. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2876–2880, 2004  相似文献   

16.
Semi‐interpenetrating polymer network beads of chitosan and poly(ethylene glycol) were prepared and characterized for controlled release of drugs. A viscous solution of chitosan and poly(ethylene glycol) in 2% acetic acid was extruded as droplets with the help of a syringe and crosslinked using glutaraldehyde. The structural studies of the beads were performed by using a Fourier transform infrared spectrophotometer and scanning electron microscope. The swelling behavior, solubility, hydrolytic degradation, and loading capacity of the beads for isoniazid were investigated. The structural changes of the beads at pH 2.0 and 7.4 were put forward using the data obtained by infrared and ultraviolet spectroscopy. The prepared beads showed 82% drug‐loading capacity, which suggested that these semi‐interpenetrating polymer network beads are suitable for controlled release of drugs in an oral sustained delivery system. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 639–649, 2001  相似文献   

17.
Semi‐interpenetrating polymer network hydrogels with different compositions of chitosan (Cs), acrylic acid, and citraconic acid were synthesized via free‐radical polymerization with ethylene glycol dimethacrylate as a crosslinker. The variations of the swelling percentages of the hydrogels with time, temperature, and pH were determined, and Cs–poly(acrylic acid) (PAA) hydrogels were found to be most swollen at pH 7.4 and 37°C. Scanning electron micrographs of Cs–PAA and Cs–P(AA‐co‐CA)‐1 (Cs‐poly(acrylicacid‐co‐citraconir acid)?1) were taken to observe the morphological differences in the hydrogels. Although the less swollen hydrogel, Cs–P(AA‐co‐CA)‐1, had a sponge‐type structure, the most swollen hydrogel, Cs–PAA, displayed a uniform porous appearance. Fluconazole was entrapped in Cs–P(AA‐co‐CA)‐1 and Cs–PAA hydrogels, and the release was investigated at pH 4.0 and 37°C. The kinetic release parameters of the hydrogels (the gel characteristic constant and the swelling exponent) were calculated, and non‐Fickian diffusion was established for Cs–PAA, which released fluconazole much more slowly than the Cs–P(AA‐co‐CA)‐1 hydrogel. A therapeutic range was reached at close to 1 h for both hydrogels. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

18.
In this article, thermosensitive poly(N‐isopropyl acrylamide‐co‐vinyl pyrrolidone)/chitosan [P(NIPAM‐co‐NVP)/CS] semi‐interpenetrating (semi‐IPN) hydrogels were prepared by redox‐polymerization using N,N‐methylenebisacrylamide as crosslinker and ammonium persulfate/N,N,N′,N′‐tetramethylethylenediamine as initiator. Highly stable and uniformly distributed Ag nanoparticles were prepared by using the semihydrogel networks as templates via in situ reduction of silver nitrate in the presence of sodium borohydride as a reducing agent. Introduction of CS improves the hydrogels swelling ratio (SR) and stabilizes the formed Ag nanoparticles in networks. Scanning electron microscopy and transmission electron microscopy revealed that Ag nanoparticles were well dispersed with diameters of 10 nm. The semi‐IPN hydrogel/Ag composites had higher SR and thermal stability than its corresponding semi‐IPN hydrogels. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
The phosphorylated poly(vinyl alcohol) (P‐PVA) samples with various substitution degrees were prepared through the esterification reaction of PVA and phosphoric acid. By using chitosan (CTS), acrylic acid (AA) and P‐PVA as raw materials, ammonium persulphate (APS) as an initiator and N,N‐methylenebisacrylamide as a crosslinker, the CTS‐g‐PAA/P‐PVA semi‐interpenetrated polymer network (IPN) ssuperabsorbent hydrogel was prepared in aqueous solution by the graft copolymerization of CTS and AA and followed by an interpenetrating and crosslinking of P‐PVA chains. The hydrogel was characterized by Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques, and the influence of reaction variables, such as the substitution degree and content of P‐PVA on water absorbency were also investigated. FTIR and DSC results confirmed that PAA had been grafted onto CTS backbone and revealed the existence of phase separation and the formation of semi‐IPN network structure. SEM observations indicate that the incorporation of P‐PVA induced highly porous structure, and P‐PVA was uniformly dispersed in the polymeric network. Swelling results showed that CTS‐g‐PAA/P‐PVA semi‐IPN superabsorbent hydrogel exhibited improved swelling capability (421 g·g?1 in distilled water and 55 g·g?1 in 0.9 wt % NaCl solution) and swelling rate compared with CTS‐g‐PAA/PVA hydrogel (301 g·g?1 in distilled water and 47 g·g?1 in 0.9 wt % NaCl solution) due to the phosphorylation of PVA. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Electroactive polymer gels composed of poly(diallyldimethylammonium chloride), poly(acrylic acid) and poly(vinyl alcohol) were prepared and their swelling properties characterized. The swelling behavior of the polymer gels was studied by immersion of the gels into deionized water at room temperature. The state of the water in the polymer gels was characterized using differential scanning calorimetry and the microstructure of the swollen gel in each sample was investigated using scanning electron microscopy. The samples' response to being stimulated in an applied electric field was also investigated. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号