首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wood‐plastic composites are being increasingly examined for nonstructural or semistructural building applications. As outdoor applications become more widespread, durability becomes an issue. Ultraviolet exposure can lead to photodegradation, which results in a change in appearance and/or mechanical properties. Photodegradation can be slowed through the addition of photostabilizers. In this study, we examined the performance of wood flour/high‐density polyethylene composites after accelerated weathering. Two 24 factorial experimental designs were used to determine the effects of two hindered amine light stabilizers, an ultraviolet absorber, a colorant, and their interactions on the photostabilization of high‐density polyethyl‐ ene blends and wood flour/high‐density polyethylene composites. Color change and flexural properties were determined after 250, 500, 1000, and 2000 h of accelerated weathering. The results indicate that both the colorant and ultraviolet absorber were more effective photostabilizers for wood flour/high‐density polyethylene composites than the hindered amine light stabilizers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2609–2617, 2003  相似文献   

2.
A thermally conductive linear low‐density polyethylene (LLDPE) composite with silicon carbide (SiC) as filler was prepared in a heat press molding. The SiC particles distributions were found to be rather uniform in matrix at both low and high filler content due to a powder mixing process employed. Differential scanning calorimeter results indicated that the SiC filler decreases the degree of crystallinity of LLDPE, and has no obvious influence on the melting temperature of LLDPE. Experimental results demonstrated that the LLDPE composites displays a high thermal conductivity of 1.48 Wm?1 K?1 and improved thermal stability at 55 wt % SiC content as compared to pure LLDPE. The surface treatment of SiC particles has a beneficial effect on improving the thermal conductivity. The dielectric constant and loss increased with SiC content, however, they still remained at relatively low levels (<102 Hz); whereas, the composites showed poorer mechanical properties as compared to pure LLDPE. In addition, combined use of small amount of alumina short fiber and SiC gave rise to improved overall properties of LLDPE composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
The thermal and mechanical properties of uncrosslinked three‐component blends of linear low‐density polyethylene (LLDPE), low‐density polyethylene (LDPE), and a hard, paraffinic Fischer–Tropsch wax were investigated. A decrease in the total crystallinity with an increase in both LDPE and wax contents was observed. It was also observed that experimental enthalpy values of LLDPE in the blends were generally higher than the theoretically expected values, whereas in the case of LDPE the theoretically expected values were higher than the experimental values. In the presence of higher wax content there was a good correlation between experimental and theoretically expected enthalpy values. The DSC results showed changes in peak temperature of melting, as well as peak width, with changing blend composition. Most of these changes are explained in terms of the preferred cocrystallization of wax with LLDPE. Young's modulus, yield stress, and stress at break decreased with increasing LDPE content, whereas elongation at yield increased. This is in line with the decreasing crystallinity and increasing amorphous content expected with increasing LDPE content. Deviations from this behavior for samples containing 10% wax and relatively low LDPE contents are explained in terms of lower tie chain fractions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1748–1755, 2005  相似文献   

4.
Glass beads were used to improve the mechanical and thermal properties of high‐density polyethylene (HDPE). HDPE/glass‐bead blends were prepared in a Brabender‐like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass‐bead blends increased considerably with increasing glass‐bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass‐bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass‐bead content up to a critical value; thereafter, it increased sharply with increasing glass‐bead content. That is, the Izod impact strength of the blends underwent a sharp transition with increasing glass‐bead content. It was calculated that the critical interparticle distance for the HDPE/glass‐bead blends at room temperature (25°C) was 2.5 μm. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass‐bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass‐bead content. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2102–2107, 2003  相似文献   

5.
The effects of polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the thermal properties, morphology, and tensile properties of blends of low‐density polyethylene (LDPE) and corn starch were studied with a differential scanning calorimeter (DSC), scanning electron microscope (SEM), and Instron Universal Testing Machine, respectively. Corn starch–LDPE blends with different starch content and with or without the addition of PE‐g‐MA were prepared with a lab‐scale twin‐screw extruder. The crystallization temperature of LDPE–corn starch–PE‐g‐MA blends was similar to that of pure LDPE but higher than that of LDPE–corn starch blends. The interfacial properties between corn starch and LDPE were improved after PE‐g‐MA addition, as evidenced by the structure morphology revealed by SEM. The tensile strength and elongation at break of corn starch–LDPE–PE‐g‐MA blends were greater than those of LDPE–corn starch blends, and their differences became more pronounced at higher starch contents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2904–2911, 2003  相似文献   

6.
We performed surface modification of ultra‐high‐molecular‐weight polyethylene (UHMWPE) through chromic acid etching, with the aim of improving the performance of its composites with poly(ethylene terephthalate) (PET) fibers. In this article, we report on the morphology and physicomechanical and tribological properties of modified UHMWPE/PET composites. Composites containing chemically modified UHMWPE had higher impact properties than those based on unmodified UHMWPE because of improved interfacial bonding between the polymer matrix and the fibers and better dispersion of the fibers within the modified UHMWPE matrix. Chemical modification of UHMWPE before the introduction of PET fibers resulted in composites exhibiting improved wear resistance compared to the base material and compared to unmodified UHMWPE/PET composites. On the basis of the morphological studies of worn samples, microploughing and fatigue failure associated with microcracking were identified as the principle wear mechanisms. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

7.
The grafting of vinyltriethoxysilane (VTES) onto polyethylene (PE) with the help of small amounts of peroxides was investigated to film‐blow these modified materials. The degree of crosslinking was kept very low to achieve good melt processability and improved mechanical properties. The possibility of obtaining modified PE films with improved properties and regularly distributed crosslinking with a single processing step demonstrates the uniqueness of this study. The additive concentration was established through preliminary studies; with a batch mixer, it was possible to process the modified PE in the film‐blowing operation. Water treatment of the modified films after film blowing allowed for improved properties without the processability being affected. The modification of PE was followed with mechanical, rheological, and extraction tests and with calorimetric analyses. The variations of the main mechanical properties of the films were very important from an application point of view. The elastic modulus and tear strength of the films for both extrusion directions (machine and transverse) increased with the VTES concentration increasing and even more with the addition of a small quantity of a peroxide. Some reductions of the tensile strength and elongation at break were observed, but these reductions were not considerable. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The mechanical properties and water absorption of low‐density polyethylene/sawdust composites were investigated. The relationship between the filler content and the composite properties was also studied. Different degrees of esterification of the sawdust with maleic anhydride were obtained with different reaction times. The experimental results demonstrated that the treatment of sawdust by maleic anhydride enhanced the tensile and flexural strengths. The water absorption for maleic anhydride treated sawdust indicated that it was more hydrophobic than untreated sawdust. The effects of the addition of benzoyl peroxide during the preparation of composite samples on the water absorption and mechanical properties were also evaluated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
The objectives of this study were to examine the effects of the processing conditions, sterilization, and thermal treatment on the morphological and mechanical properties of ultra‐high‐molecular‐weight polyethylene (UHMWPE) in medical applications by means of thermal analysis, Fourier transform infrared spectroscopy, and nanoindentation. It is well known that manufacturing, irradiation, and thermal treatments significantly alter the microstructure of materials, which results in changes in their mechanical properties. UHMWPE was found to be barely sensitive to processing conditions but strongly influenced by sterilization treatments. Great emphasis was given to the characterization of the so‐called first generation of highly crosslinked UHMWPE because the thermal history of this material differed from that of γ‐irradiated materials. The physical and mechanical properties of UHMWPE were influenced as a result of γ and electron‐beam irradiation and the remelting procedure. Lower crystallinity, different lamellar thickness distributions, and lower hardness and modulus values were estimated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
The cellular structure, physical properties, and structure–property relationships of novel open‐cell polyolefin foams produced by compression molding and based on blends of an ethylene/vinyl acetate copolymer and a low‐density polyethylene have been studied and compared with those of closed‐cell polyolefin foams of similar chemical compositions and densities and with those of open‐cell polyurethane foams. Properties such as the elastic modulus, collapse stress, energy absorbed in mechanical tests, thermal expansion, dynamic mechanical response, and acoustic absorption have been measured. The experimental results show that the cellular structure of the analyzed materials has interconnected cells due to the presence of large and small holes in the cell walls, and this structure is clearly different from the typical structure of open‐cell polyurethane foams. The open‐cell polyolefin foams under study, in comparison with closed‐cell foams of similar densities and chemical compositions, are good acoustic absorbers; they have a significant loss factor and lower compressive strength and thermal stability. The physical reasons for this macroscopic behavior are analyzed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
The dynamic rheological and mechanical properties of the binary blends of two conventional high‐density polyethylenes [HDPEs; low molecular weight (LMW) and high molecular weight (HMW)] with distinct different weight‐average molecular weights were studied. The rheological results show that the rheological behavior of the blends departed from classical linear viscoelastic theory because of the polydispersity of the HDPEs that we used. Plots of the logarithm of the zero shear viscosity fitted by the Cross model versus the blend composition, Cole–Cole plots, Han curves, and master curves of the storage and loss moduli indicated the LMW/HMW blends of different compositions were miscible in the melt state. The tensile yield strength of the blends generally followed the linear additivity rule, whereas the elongation at break and impact strength were lower than those predicted by linear additivity; this suggested the incompatibility of the blends in solid state. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

12.
The effect of poly(dianilinephosphazene) (PDAP) on the processability, thermal behavior, crystallinity, morphology, mechanical properties, and flammability behavior of low‐density polyethylene (LDPE) was studied. Plasticorder traces of PDAP/LDPE blends implied good processability and miscibility. Thermogravimetric analysis showed that PDAP improved the thermal stability of LDPE. X‐ray diffraction results indicated that PDAP was a semicrystalline polymer, and the crystallinity of the blends decreased with increasing PDAP content. A new reflection at 2θ = 23.15° was found in wide‐angle X‐ray diffraction spectra of the blends, indicating that these two components interacted with one another. The scanning electron microscopy microstructures of the blends also supported these findings. Moreover, PDAP substantially enhanced the limited oxygen index and elongation at break of LDPE. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 709–714, 2002  相似文献   

13.
The effects of the blend ratio, reactive compatibilization, and dynamic vulcanization on the dynamic mechanical properties of high‐density polyethylene (HDPE)/ethylene vinyl acetate (EVA) blends have been analyzed at different temperatures. The storage modulus of the blend decreases with an increase in the EVA content. The loss factor curve shows two peaks, corresponding to the transitions of HDPE and EVA, indicating the incompatibility of the blend system. Attempts have been made to correlate the observed viscoelastic properties of the blends with the blend morphology. Various composite models have been used to predict the dynamic mechanical data. The experimental values are close to those of the Halpin–Tsai model above 50 wt % EVA and close to those of the Coran model up to 50 wt % EVA in the blend. For the Takayanagi model, the theoretical value is in good agreement with the experimental value for a 70/30 HDPE/EVA blend. The area under the loss modulus/temperature curve (LA) has been analyzed with the integration method from the experimental curve and has been compared with that obtained from group contribution analysis. The LA values calculated with group contribution analysis are lower than those calculated with the integration method. The addition of a maleic‐modified polyethylene compatibilizer increases the storage modulus, loss modulus, and loss factor values of the system, and this is due to the finer dispersion of the EVA domains in the HDPE matrix upon compatibilization. For 70/30 and 50/50 blends, the addition of a maleic‐modified polyethylene compatibilizer shifts the relaxation temperature of both HDPE and EVA to a lower temperature, and this indicates increased interdiffusion of the two phases at the interface upon compatibilization. However, for a 30/70 HDPE/EVA blend, the addition of a compatibilizer does not change the relaxation temperature, and this may be due to the cocontinuous morphology of the blends. The dynamic vulcanization of the EVA phase with dicumyl peroxide results in an increase in both the storage and loss moduli of the blends. A significant increase in the relaxation temperature of EVA and a broadening of the relaxation peaks occur during dynamic vulcanization, and this indicates the increased interaction between the two phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2083–2099, 2003  相似文献   

14.
Uniaxial oscillating stress field by dynamic packing injection molding (DPIM) is well established as a means of producing uniaxially self‐reinforced polyethylene and polypropylene. Here, the effects on the mechanical properties of high‐density polyethylene (HDPE) in both flow direction (MD) and transverse direction (TD) of packing modules and processing parameters in DPIM are described. Both biaxially and uniaxially self‐reinforced HDPE samples are obtained by uniaxial shear injection molding. The most remarkable biaxially self‐reinforced HDPE specimens show a 42% increase of the tensile strength in both MD and TD. The difference of stress–strain behavior and impact strength between MD and TD for the DPIM moldings indicates the asymmetry of microstructure in the two directions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1584–1590, 2004  相似文献   

15.
Rice straw fiber‐high density polyethylene (HDPE) composites were prepared to investigate the effects of rice straw fiber morphology (rice straw refined fiber, rice straw pellet, rice straw strand), fiber content (20 and 40 wt %), and maleic anhydride polyethylene (MAPE) concentration (5 wt %) on the mechanical and thermal properties of the rice straw fiber‐HDPE composites in this study. Rice straw refined fiber exhibited more variability in length and width, and have a higher aspect ratio of 16.3. Compared to the composites filled of rice straw pellet, the composites made of the refined fiber and strand had a slightly higher tensile strength and lower tensile elongation at break. The tensile and flexural strength of the composites increased slightly with increasing rice straw fiber content up to 40 wt %, while the tensile elongation at break decreased. With addition MAPE, the composites filled with 20 wt % rice straw fiber showed an increase in tensile, flexural and impact strength and a decrease in tensile elongation at break. Differential scanning calorimetry showed that the fiber addition and morphology had no appreciable effect on the crystallization temperature of the composites but decreased the crystallinity. The scanning electron microscopy observation on the fracture surface of the composites indicated that introduction of MAPE to the system resulted in promotion in fiber dispersion, and an increase in interfacial bonding strength. Fiber breakage occurred significantly in the composites filled with refined fiber and strand after extruding and injection processing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

16.
This study was concerned with the structural features and mechanical properties of polypropylene (PP)/low‐density polyethylene (LDPE) blends, which after compounding were modified by the free‐radical grafting of itaconic acid (IA) to produce [PP/LDPE]‐g‐IA in the course of reactive extrusion. To analyze the structural features of the [PP/LDPE]‐g‐IA systems, differential scanning calorimetry and relaxation spectrometry techniques were used. The data were indicative of the incompatibility of PP and LDPE in the [PP/LDPE]‐g‐IA systems on the level of crystalline phases; however, favorable interactions were observed within the amorphous phases of the polymers. Because of these interactions, the crystallization temperature of PP increased by 5–11°C, and that of LDPE increased by 1.3–2.7°C. The rapprochement of their glass‐transition temperatures was observed. The single β‐relaxation peak for the [PP/LDPE]‐g‐IA systems showed that compatibility on the level of structural units was responsible for β relaxation in the homopolymers used. Variations in the ratios of the polymers in the [PP/LDPE]‐g‐IA systems led to both nonadditive and complex changes in the viscoelastic properties as well as mechanical characteristics for the composites. Additions of up to 5 wt % PP strengthened the [PP/LDPE]‐g‐IA blended systems between the glass‐transition temperatures of LDPE and PP. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1746–1754, 2006  相似文献   

17.
A series of high‐density polyethylene (HDPE)/CaCO3 blends were prepared with different kinds of coupling agents, with CaCO3 particles of different sizes, and with matrixes of different molecular weights during the melt‐mixing of HDPE and CaCO3 particles. The mechanical properties of these blends and their dependence on the interfacial adhesion and matrix crystalline structure were studied. The results showed that the Charpy notched impact strength of these blends could be significantly improved with an increase in the interfacial adhesion or matrix molecular weight or a decrease in the CaCO3 particle size. When a CaCO3 surface was treated with a compounded coupling agent, the impact strength of the HDPE/CaCO3(60/40) blend was 62.0 kJ/m2, 2.3 times higher than that of unimproved HDPE; its Young's modulus was 2070 MPa, 1.07 times higher than that of unimproved HDPE. The heat distortion temperature of this blend was also obviously improved. The improvement of the mechanical properties and the occurrence of the brittle–tough transition of these blends were the results of a crystallization effect induced by the interfacial stress. When the interfacial adhesion was higher and the CaCO3 content was greater than 30%, the interfacial stress produced from matrix shrinkage in the blend molding process could strain‐induce crystallization of the matrix, leading to an increase in the matrix crystallinity and the formation of an extended‐chain (or microfibrillar) crystal network. The increase in the critical ligament thickness with an increasing matrix molecular weight was attributed to the strain‐induced areas becoming wider, the extended‐chain crystal layers becoming thicker, and the interparticle distance that formed the extended‐chain crystal network structure becoming larger with a higher matrix molecular weight. The formation of the extended‐chain crystal network and the increase in the matrix crystallinity were also the main reasons that Young's modulus and the heat distortion temperature of this blend were improved. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2120–2129, 2003  相似文献   

18.
Previously, bi‐axial self‐reinforcement of high‐density polyethylene (HDPE) was achieved through a uni‐axial shear stress field introduced by dynamic packing injection molding technology. Here, further improvement of tensile strength along the flow direction (MD) was achieved by blending a small amount of high‐molecular‐weight polyethylene (HMWPE) with HDPE, while the tensile strength along the transverse direction (TD) still substantially exceeded that of conventional moldings. Tensile strengths in both flow and transverse directions were considerably enhanced, with improvements from 23 MPa to 76 MPa in MD and from 23 MPa to 31 MPa in TD. The effect of HMWPE content and molding parameters on tensile properties was also investigated. The tensile strength along MD was highly dependent on HMWPE content, oscillating cycle, mold temperature, melt temperature and packing pressure, while that along TD was insensitive to composition and processing parameters within the selected design space. According to the stress–strain curves, samples with HMWPE produced by dynamic packing injection molding had a special tensile failure mode in MD, different from both typical plastic and brittle failure modes. There were no yielding and necking phenomena, which are characteristic during tensile testing of plastic materials, but there was still a considerably higher elongation compared to those of brittle materials. However, in TD, all dynamic injection molding samples exhibited plastic failure as did typical conventional injection molding samples. Copyright © 2006 Society of Chemical Industry  相似文献   

19.
The morphology and mechanical properties of a styrene–ethylene/butylene–styrene triblock copolymer (SEBS) incorporated with high‐density polyethylene (HDPE) particles were investigated. The impact strength and tensile strength of the SEBS matrix obviously increased after the incorporation of the HDPE particles. The microstructure of the SEBS/HDPE blends was observed with scanning electron microscopy and polar optical microscopy, which illustrated that the SEBS/HDPE blends were phase‐separation systems. Dynamic mechanical thermal analysis was also employed to characterize the interaction between SEBS and HDPE. The relationship between the morphology and mechanical properties of the SEBS/HDPE blends was discussed, and the toughening mechanism of rigid organic particles was employed to explain the improvement in the mechanical properties of the SEBS/HDPE blends. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
This article describes results obtained with a process developed for rolling and drawing simultaneously polymer profiles in the solid state. Solid‐state roll drawing has the advantage of being continuous, which allows relatively high production rates and the generation of high deformation ratios with some degree of biaxial orientation. The roll‐drawing process allows the extent of biaxial orientation to be controlled by the adjustment of the tension and compression loads applied to the polymers, in particular semicrystalline thermoplastics. Some experimental results obtained with a four‐station roll‐drawing apparatus are presented, particularly on high‐density polyethylene (HDPE) and polypropylene. The effect of process parameters, such as the gap between the rolls and tension, are discussed. Aspects discussed also include relaxation; structure development in terms of orientation and crystallinity as a function of draw ratio (λ); λ as a function of process parameters; and finally, mechanical and thermal properties as a function of λ. Moduli as high as 25 GPa in the longitudinal direction and about 4 GPa in the transverse direction were obtained with successively rolled, initially thick, HDPE profiles. © 2006 Government of Canada. Exclusive worldwide publication right in the article have been transferred to Wiley Periodicals, Inc. J Appl Polym Sci 102: 3391–3399, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号