首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafine-grained materials are attractive for achieving superplastic elongations provided the grains are reasonably stable at elevated temperatures. Since the strain rate in superplasticity varies inversely with the grain size raised to a power of two, a reduction in grain size to the submicrometer level leads to the occurrence of superplastic flow within the region of high strain rate superplasticity at strain rates >10−2 s−1. This paper tabulates and examines the various reports of superplasticity in ultrafine-grained materials. It is shown that these materials exhibit many characteristics similar to conventional superplastic alloys including strain rates that are consistent with the standard model for superplastic flow and the development of internal cavitation during the flow process.  相似文献   

2.
Influence of the Al2Cu‐phase on the superplasticity of AlCuMn alloy High‐temperature creep‐resistant AlCuMn wrought alloy has been investigated and optimised with respect to their superplastic deformability; a maximal elongation ε of 850 per cent was thus attained at a deformation temperature of 530°C. Prerequisites for superplastic deformation behaviour and for the associated high elongation values of these aluminium alloys are an especially fine‐grained structure as well as a decrease in the amount of Al2Cu phase and a uniform distribution of this phase in the structure. Superplastic deformation (SPD) results in a pronounced change in the shape of the large particles of the θ‐phase; the particles of this phase thereby form veins along the boundaries of adjacent grains. During deformation, the grains lose their equiaxial shape and elongate in the direction of tension as a result of pronounced intragranular sliding dislocation in the microstructure. Transmission electron micrographs of the deformed structure have revealed a pile‐up of dislocations in the grains of the aluminium alloy. The grain size of commercially available sheets of AlCuMn wrought alloys with a thickness of 1 mm is approximately 30 μm. After optimising, the grain size of the sheets produced by the new method was on 12 μm until 5 μm. The new technique differs only slightly from industrial manufacture.  相似文献   

3.
NiAl合金的超塑性行为及其变形机制   总被引:6,自引:0,他引:6  
研究了等原子比NiAl合金的NiAl-25Cr,NiAl-20.4Fe-Y,Ce,NiAl-30Fe-Y合金的超塑性行为及其变形机制,结果表明,几种合金在一定条件下均表现出超塑性行为,单相NiAl超塑性变形源于变形过程中所发生的动态回夏及再结晶,两相及多相NiAl合金的超塑性变形机制则是晶粒的转动和界面的滑动。  相似文献   

4.
王辉  刘满平  唐恺  李毅超  韦江涛  姜奎  江家威 《材料导报》2016,30(15):119-123, 129
近年来,大塑性变形(SPD)制备具有先进结构和功能的超细晶和纳米晶Al-Mg铝合金的研究取得了很大进展。SPD后,合金的晶粒显著细化、位错密度提高及有非平衡晶界和晶界偏析形成,这些微观结构导致合金的强度、硬度大幅提高。然而,SPD合金的塑性普遍较低。综述了SPD制备的Al-Mg铝合金在结构和性能方面的一些最新研究成果。  相似文献   

5.
The superplastic behavior of medical magnesium alloys is reviewed in this overview article. Firstly, the basics of superplasticity and superplastic forming via grain boundary sliding (GBS) as the main deformation mechanism are discussed. Subsequently, the biomedical Mg alloys and their properties are tabulated. Afterwards, the superplasticity of biocompatible Mg-Al, Mg-Zn, Mg-Li, and Mg-RE (rare earth) alloys is critically discussed, where the influence of grain size, hot deformation temperature, and strain rate on the tensile ductility (elongation to failure) is assessed. Moreover, the thermomechanical processing routes (e.g. by dynamic recrystallization (DRX)) and severe plastic deformation (SPD) methods for grain refinement and superplasticity in each alloying system are introduced. The importance of thermal stability (thermostability) of the microstructure against the grain coarsening (grain growth) is emphasized, where the addition of alloying elements for the formation of thermally stable pinning particles and segregation of solutes at grain boundaries are found to be major controlling factors. It is revealed that superplasticity at very high temperatures can be achieved in the presence of stable rare-earth intermetallics. On the other hand, the high-strain-rate superplasticity and low-temperature superplasticity in Mg alloys with great potential for industrial applications are summarized. In this regard, it is shown that the ultrafine-grained (UFG) duplex Mg-Li alloys might show remarkable superplasticity at low temperatures. Finally, the future prospects and distinct research suggestions are summarized. Accordingly, this paper presents the opportunities that superplastic Mg alloys can offer for the biomedical industries.  相似文献   

6.
Ti–6Al–4V alloy having a heterogeneous microstructure composed of ultrafine‐equiaxed‐α‐grains and fine‐lamellar‐α‐grains is investigated for microstructural changes during superplastic deformation at temperature of 700 °C. The Ti–6Al–4V alloy having an optimum fraction of fine‐lamellar‐α‐grains exhibits an excellent superplastic property and the highest elongation of 583% (tested at 700 °C 10?3 s?1). This is mainly due to the optimized activation of grain‐boundary‐sliding and additional accommodation mechanism associated with frequent occurrences of dynamic recrystallization and β precipitation at boundaries during deformation of the heterogeneous starting microstructure. The present result suggests the possibility that optimizing the starting microstructure so as to have an optimum heterogeneous‐microstructure serves as an additional stress accommodation mechanism and leads to a large superplastic elongation.
  相似文献   

7.
超细晶超高碳钢的研究现状及展望   总被引:1,自引:0,他引:1  
石淑琴  陈光  谷南驹 《材料导报》2003,17(11):19-22
超细晶超高碳钢是国外近年来发展起来的一种新型的、并具有重要发展前景的高性能钢铁材料。在系统总结超细晶超高碳钢的化学成分设计、制备工艺、室温组织性能及超塑性等各方面研究现状的基础上,对超细晶超高碳钢的发展提出展望。  相似文献   

8.
Effect of strain rate on microstructural change in deformation of the ultrafine grained (UFG) aluminum produced by severe plastic deformation (SPD) was studied. Commercial purity 1100 aluminum sheets were highly strained up to an equivalent strain of 4.8 by the Accumulative Roll-Bonding (ARB) process at ambient temperature. The ARB-processed sheets were found to be filled with pancake-shaped ultrafine grains surrounded by high-angle grain boundaries. The ultrafine grains had a mean grain thickness of 200 nm and a mean grain length of 1100 nm. The ultrafine-grained aluminum sheets were deformed at various strain rates ranging from 2 to 6.0×104 s−1 by conventional rolling, ultra-high-speed rolling, and impact compression. High-speed plastic deformation generates a large amount of heat, inducing coarsening of the ultrafine grains during and after deformation. On the other hand, it was also suggested that high-speed plastic deformation is effective for grain-subdivision, in other words, ultra-grain refinement, if the effect of heat generation is extracted.  相似文献   

9.
Capacity to reach large deformation at high temperature is an important issue in many forming processes of metallic alloys. It is well known that a low value of the stress exponent (or a concomitant high value of the strain rate sensitivity parameter) is a key point for controlling resistance to necking. A first way for decreasing the stress exponent is to get superplastic properties but it frequently requires dealing with fine microstructures which can be difficult to produce and to preserve. Moreover, in the case of single phase alloys, like aluminum or magnesium alloys, superplastic deformation generally induces damage which can result in premature fracture or damaged components after forming. The aim of this paper is to give some guidelines for promoting high temperature deformation of metallic alloys, with a particular attention given to superplastic forming. The possibility to reduce the temperature of superplastic forming (SPF) for titanium alloys, the capacity to get a better understanding of the specificities of damage process in the case of superplastic deformation and the ability to get large strains to fracture avoiding the production of fine grains before strain are more specifically discussed.  相似文献   

10.
It is now well established that processing by equal-channel angular pressing (ECAP) leads to grain refinement and produces materials having the potential for exhibiting extensive superplastic flow at elevated temperatures. High-pressure torsion (HPT) is also an effective procedure for refining the grain sizes of polycrystalline metals to the submicrometer or even the nanometer level, and recent results show that this processing method also gives materials that exhibit excellent superplastic characteristics. This report examines the various publications describing superplasticity in metallic alloys processed by HPT. A comprehensive tabulation is presented listing all of the results to date showing true superplastic elongations of at least 400 % after processing by HPT. Examples of superplastic elongations are described for tensile tests conducted using specimens cut from either disk or ring samples. An analysis shows that the flow behavior of various Al and Mg alloys is in good agreement with the predicted flow behavior for conventional superplastic materials.  相似文献   

11.
Severe plastic deformation(SPD)-induced gradient nanostructured(GNS)metallic materials exhibit supe-rior mechanical performance,especially the high strength and good ductility.In this study,a novel high-speed machining SPD technique,namely single point diamond turning(SPDT),was developed to produce effectively the GNS layer on the hexagonal close-packed(HCP)structural Mg alloy.The high-resolution transmission electron microscopy observations and atomistic molecular dynamics sim-ulations were mainly performed to atomic-scale dissect the grain refinement process and corresponding plastic deformation mechanisms of the GNS layer.It was found that the grain refinement process for the formation of the GNS Mg alloy layer consists of elongated coarse grains,lamellar fine grains with deformation-induced-tension twins and contraction twins,ultrafine grains,and nanograins with the grain size of~70 nm along the direction from the inner matrix to surface.Specifically,experiment results and atomistic simulations reveal that these deformation twins are formed by gliding twinning partial dis-locations that are dissociated from the lattice dislocations piled up at grain boundaries.The corresponding deformation mechanisms were evidenced to transit from the deformation twinning to dislocation slip when the grain size was below 2.45 μm.Moreover,the Hall-Petch relationship plot and the surface equivalent stress along the gradient direction estimated by finite element analysis for the SPDT process were incorporated to quantitatively elucidate the transition of deformation mechanisms during the grain refinement process.Our findings have implications for the development of the facile SPD technique to construct high strength-ductility heterogeneous GNS metals,especially for the HCP metals.  相似文献   

12.
Versions of rheological models describing the phenomenological behavior of materials in the superplasticity state with allowance for the elastic component and without allowance for it have been presented. Consideration has been given to the basic indications of manifestation of superplastic properties from the viewpoint of the influence of the dimensions of the structural components on them. Analytical dependences of the governing relations of the mechanics of a deformable rigid body, which allow for the influence of the applied stresses, the structure, and the temperature on the rate of superplastic deformation (SPD) and enable one to calculate the shear viscosity and the rheological dependences of SPD for deformable aluminum alloys AMg4 and AMg6 with a prepared ultrafinegrained structure, have been given.  相似文献   

13.
铁基超微晶合金的磁性和应用   总被引:1,自引:1,他引:0  
张延忠 《功能材料》1994,25(2):176-184
本文较详细地介绍了近三年国内外研制的新型铁基超微晶软磁合金的各种磁性能和在电子工业上的应用情况。  相似文献   

14.
The rate sensitive flow characteristics in the elevated temperature deformation of Al-Fe-V-Si alloys processed by rapid solidification/powder metallurgy route were assessed by the strain rate change tests in compression. With an ultrafine grain size, stabilized by fine dispersoids, a peak rate sensitivity index of 0.15 and normal ductility were observed in alloys containing dispersoids up to a volume fraction of 0.37. The lack of superplastic response is interpreted in terms of a high threshold stress for superplastic flow. The threshold stress assessed by an extrapolation procedure is observed to be grain size and temperature dependent. Its origin is suggested to be Zener drag limited boundary migration, which is an essential part of the superplastic flow mechanism.  相似文献   

15.
The tensile deformation behavior of samples made of magnesium and titanium alloys with superplastic layer(s) was investigated. It was observed that deformation took place by means of layer-by-layer shear in the superplastic region. Traces of such shear were visible to the unaided eye on the surface of the deformed specimens. The spacing of these shear surfaces was about 6–8 grains. It is suggested that superplastic deformation proceeds by cooperative grain shear along two intersecting grain boundary systems oriented at approximately 45°–60° to the tensile axis. Using optical microscopy and back-scattered electron imaging on a scanning electron microscope, traces of shear systems were also observed on the prepolished surfaces of deformed magnesium alloy samples and the etched surfaces of deformed titanium alloy samples.  相似文献   

16.
This paper considers to what extent the second-phase volume fraction in superplastic binary alloys affect the matrix grain size stability during deformation and, through it, the flow stress at constant temperature and strain rate. It is shown for five different superplastic binary alloy systems, that at constant temperature and strain rate the flow stress will increase with the deviation of the second-phase volume fraction in the alloys from that required for maximum matrix grain size stability. A new parameter (Z) which quantifies these deviations has been introduced in this paper. The possible errors in determining the pertinent parameters in the rate equation for superplastic flow by testing alloys withZ is discussed.  相似文献   

17.
Abstract

The production of fine, stable equiaxed grains, having disordered high angle boundaries, is a prerequisite for superplastic behaviour in crystalline solids. The way that superplastic microstructures can be achieved in pseudo-single-phase and duplex materials by thermomechanical processing is discussed for a number of commercially significant materials. The resulting superplastic deformation characteristics are outlined, as are the factors that influence cavitation during superplastic flow. Alloys based on aluminium, titanium, copper, iron, and nickel are considered, and also aluminium based metal-matrix composites, intermetallic phases, and crystalline ceramic materials. Recent work on markedly enhanced superplastic behaviour in aluminium and copper alloys and in stainless steels is reported, and the similarities between superplasticity in crystalline ceramics and metallic materials is discussed. The development of superplastic microstructures in metal-matrix composites, intermetallic phases, and ceramics has enhanced their formability and their potential as high temperature structural materials.

MST/1298  相似文献   

18.
The relationship between the high-frequency magnetic properties and surface structure of the amorphous[Co_(0.94-x)Fe_(0.06)(MnMo)_x]_(77)(SiB)_(23) alloys annealed at 400-500℃ then control-cooled was investigated usingXRD,TEM and XPS techniques.The results have shown that the high-frequency losses of the present alloys ob-viously reduced after suitable treatment.A crystalline layer with ultrafine grains of γ-Co formed on the surface ofthe amorphous ribbons.The size of the grains is 10-20 nm.The thickness of the layer is less than 0.1 μm.The sur-face of the crystalline layer is covered with an extremely thin oxide film which is very uniform and dense withthickness of less than 30 nm,the size of grains of the oxide is less than 10 nm.These ultrafine grains and thedense oxide film effectively refine the magnetic domains and increase the resistance of the layers of the magneticcore,consequently the losses at high frequency are fairly reduced.  相似文献   

19.
《Materials Science & Technology》2013,29(11-12):1330-1333
Abstract

Equal channel angular pressing (ECAP) is a processing procedure in which a sample is pressed through a die containing a channel bent into an L shaped configuration. This procedure introduces a high strain into the sample without any change in the cross-sectional area and it may be used to attain an ultrafine grain size with dimensions lying typically within the submicrometer range. This paper describes a series of experiments where ECAP was applied to a commercial Al–Mg–Li–Zr alloy having an initial grain size of ~400 µm. The results demonstrate a refinement in the grain size of this alloy to a size of ~1 µm and it is shown that these small grains are stable up to temperatures >600 K because of the presence of β′-Al3Zr particles. The stability of these ultrafine grains at elevated temperatures provides an opportunity to achieve superplastic ductilities in this alloy at very high strain rates: for example, the measured elongations to failure under optimum pressing conditions exceed 1000% at a strain rate of 10-1 s-1 when testing at temperatures above 600 K.  相似文献   

20.
Recently, it becomes possible to fabricate bulk metals having ultrafine grained or nanocrystalline structures of which grain size is in nano-meter dimensions. One of the promising ways to realize bulk nanostructured metals is severe plastic deformation (SPD) above logarithmic equivalent strain of 4. We have developed an original SPD process, named Accumulative Roll Bonding (ARB) using rolling deformation in principle, and have succeeded in fabricating bulk nanostructured sheets of various kinds of metals and alloys. The ARB process and the nanostructured metals fabricated by the ARB are introduced in this paper. The nanostructured metals sometimes perform quite unique mechanical properties, that is rather surprising compared with conventionally coarse grained materials. The unique properties seem to be attributed to the characteristic structures of the nano-metals full of grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号