首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pyrolysed oil shale (POS) obtained from the pyrolysis of bituminous rock was used as filler in poly(ethylene‐co‐vinyl alcohol) (EVAL). The effects of vinyl alcohol content in the EVAL and the particle size of pyrolysed oil shale in the mechanical properties were investigated. The EVAL was prepared by hydrolysis of poly(ethylene‐co‐vinyl acetate) (EVA) with 8 and 18 wt % of vinyl alcohol content. The composites were prepared in a rotor mixer at 180°C with concentration of pyrolysed oil shale up to 5 wt %. Stress–strain plots of compression‐molded composites showed a synergic behavior in the mechanical properties for low concentrations (1–5 wt %) of POS in all particle sizes and EVAL used. Such behavior indicates a close packing and strong interactions between the inorganic filler and the polymer. Increasing of the vinyl alcohol content of EVAL improved the compatibility between the polymer and filler, but decreasing the POS particle size had no effect on the properties. The modulus and the ultimate tensile strength also increased in all concentrations of POS for both EVAL. Mechanical properties and dynamic mechanical analysis also demonstrated the compatibility between EVAL and POS. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1658–1665, 2004  相似文献   

2.
Biodegradable composites of poly(butylene succinate‐co‐butylene adipate) (PBSA) reinforced by poly(lactic acid) (PLA) fibers were developed by hot compression and characterized by Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), dynamic mechanical analyzer, and tensile testing. The results show that PBSA and PLA are immiscible, but their interface can be improved by processing conditions. In particular, their interface and the resulting mechanical properties strongly depend on processing temperature. When the temperature is below 120 °C, the bound between PBSA and PLA fiber is weak, which results in lower tensile modulus and strength. When the processing temperature is higher (greater than 160 °C), the relaxation of polymer chain destroyed the molecular orientation microstructure of the PLA fiber, which results in weakening mechanical properties of the fiber then weakening reinforcement function. Both tensile modulus and strength of the composites increased significantly, in particular for the materials reinforced by long fiber. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43530.  相似文献   

3.
Polypropylene (PP) composites filled with wood flour (WF) were prepared with a twin‐screw extruder and an injection‐molding machine. Three types of ecologically friendly flame retardants (FRs) based on ammonium polyphosphate were used to improve the FR properties of the composites. The flame retardancy of the PP/WF composites was characterized with thermogravimetric analysis (TGA), vertical burn testing (UL94‐V), and limiting oxygen index (LOI) measurements. The TGA data showed that all three types of FRs could enhance the thermal stability of the PP/WF/FR systems at high temperatures and effectively increase the char residue formation. The FRs could effectively reduce the flammability of the PP/WF/FR composites by achieving V‐0 UL94‐V classification. The increased LOI also showed that the flammability of the PP/WF/FR composites was reduced with the addition of FRs. The mechanical property study revealed that, with the incorporation of FRs, the tensile strength and flexural strength were decreased, but the tensile and flexural moduli were increased in all cases. The presence of maleic anhydride grafted polypropylene (MAPP) resulted in an improvement of the filler–matrix bonding between the WF/intumescent FR and PP, and this consequently enhanced the overall mechanical properties of the composites. Morphological studies carried out with scanning electron microscopy revealed clear evidence that the adhesion at the interfacial region was enhanced with the addition of MAPP to the PP/WF/FR composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
As a kind of reinforcing agent, the application of nanocrystalline cellulose (NCC) is widely limited in hydrophobic polymers owing to its rich hydroxyl surface. In this study, NCC was modified with lauric acid/p‐toluensulfonyl chloride mixture, then the modified nanocrystalline cellulose (mNCC) was incorporated into biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P(3,4)HB) by solution casting to prepare P(3,4)HB/mNCC nanocomposites. The prepared mNCC and P(3,4)HB/mNCC nanocomposites were characterized by Fourier transform‐infrared, X‐ray diffraction, contact angle test, transmission electron microscopy, scanning electron microscopy, differential scanning calorimetric, polarized optical microscope, dynamic mechanical analysis, and thermogravimetric analysis. The results show that the crystallinity and mechanical properties of P(3,4)HB are greatly improved due to the fact that NCC can be modified successfully and the mNCC can distribute uniformly in nanoscale in the matrix with good compatibility along the interface. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2015–2022, 2013  相似文献   

5.
Poly(N‐vinylpyrrolidone) (PVP) groups were grafted onto poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) backbone to modify the properties of PHBV and synthesize a new novel biocompatible graft copolymer. The effect of graft modification with PVP on the thermal and mechanical properties of PHBV was investigated. The thermal stability of grafted PHBV was remarkably improved while the melting temperature (Tm) was almost not affected by graft modification. The isothermal crystallization behavior of samples was observed by polarized optical microscopy and the results showed that the spherulitic radial growth rates (G) of grafted PHBV at the same crystallization temperature (Tc) decreased with increasing graft yield (graft%) of samples. Analysis of isothermal crystallization kinetics showed that both the surface free energy (σe) and the work of chain‐folding per molecular fold (q) of grafted PHBV increased with increasing graft%, implying that the chains of grafted PHBV are less flexible than ungrafted PHBV. This conclusion was in agreement with the mechanical testing results. The Young's modulus of grafted PHBV increased while the elongation decreased with increasing graft%. The hydrophilicity of polymer films was also investigated by the water contact angle measurement and the results revealed that the hydrophilicity of grafted PHBV was enhanced. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Ink‐eliminated sludge flour (IESF), waste residue from the recycling treatments of waste paper, was utilized as a new kind of filler to reinforce polypropylene (PP) in this research work. Different coupling agents, including maleated anhydride grafted PP (MAPP), stearic acid (SA), and titanate (NDZ‐101), were used to increase the compatibility between IESF and PP. By using different measurements, the microstructure, morphology, thermal behaviors, and mechanical properties of the IESF/PP composites were investigated in detail. It was found that IESF, as a nucleation agent, not only induced the crystallization orientation of PP but also accelerate the crystallization rate of PP. Just as indicated in the experiments, the presence of IESF has shown the advantages of increasing the dimensional stability, the hardness and the flexural property, and the presence of coupling agents has a favorable effect on the improvement of dimensional stability. Moreover, the coupling agent has minor influence on the mechanical property, even causes some decrease in the impact strength. Among these three coupling agents, MAPP is found to be the best coupling agent for increasing the interfacial adhesion between IESF and PP, and the MAPP addition makes the PP composite possess the quickest crystallization rate and greatest tensile strength. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 513–520, 2003  相似文献   

7.
Poly(propylene‐co‐ethylene) composites with rice husk were prepared in a corotating intermeshing twin‐screw extruder using four different coupling agents. While modified maleic anhydrides such as maleated polypropylene (MAPP) and maleated polyethylene (MAPE) are commonly used as compatibilizers to improve interfacial adhesion between lignocellulosic filler and matrix, in this study, polypropylene grafted with acid comonomer (CAPP) and high‐density polyethylene grafted with acid comonomer (CAPE) were also used. The morphologies and the thermal and mechanical properties of the composites were characterized using scanning electron microscopy, thermogravimetric analysis, differential scanning analysis, tensile and impact tests. The results indicate that the base resin of the compatibilizer is an important factor in determining the effectiveness of compatibilizers for composites. Composites with PP‐based compatibilizers are more effective than PE‐based compatibilizers due to the improved wetting of the former compatibilizer in the matrix polymer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Blends of poly(propylene) (PP) and poly(ethylene terephthalate‐co‐isophthalate) (co‐PET) (95/5) with and without compatibilizing agent (maleic anhydride PP), as well as composites of these blends with glass beads (50 wt%) with and without silane coupling agent surface‐treatment, were prepared and studied on a basis of the material microstructure and thermomechanical properties. Infrared and Raman spectroscopy, as well as transmission electron microscopy, displayed evidence of MAPP compatibilizing action for the blend. Differential scanning calorimetry showed a remarkable effect of nucleation rate increase exerted by co‐PET on the PP crystallization. Moreover, glass beads were found to increase the PP nucleation rate slightly. PP crystallinity hardly varied with the composition. Wide angle X‐ray diffraction allowed determination of differences in the orientation of the poly(propylene) b‐axis, with more homogeneous orientations in the presence of both co‐PET and glass beads. MAPP promoted the PP b‐axis orientation. Differences in PP α′ relaxation could be analyzed through dynamic‐mechanical thermal analysis (DMTA). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1841–1852, 2004  相似文献   

9.
Miscibility and properties of two atactic poly(methyl methacrylate)‐based blends [containing 10 and 20% of poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate)] have been investigated as a function of thermal treatments. Differential scanning calorimetry and dynamic mechanical thermal analysis of blends quenched in liquid nitrogen or ice/water, after annealing at T > 190 °C, showed a single glass transition temperature, indicating miscibility of the components for the time‐temperature history. Two glass transition temperatures, equal to those of the pure components, are instead found for blends after annealing at T < 190 °C. Scanning electron microscopy confirmed the homogeneity for the former quenched blends and phase separation for the latter. These results indicate the presence of an upper critical solution temperature (UCST). Tensile experiments, performed on two series of samples annealed at temperatures above and below the UCST, showed that the copolyester induces a decrease of Young's modulus and stresses at yielding and break points, and a marked increase of elongation at break. Differences in tensile properties between the two series of annealed blends are accounted for by the physical state of the components at room temperature after annealing above or below the UCST. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
Dicumyl peroxide (DCP) initiated reactive compatibilization of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV)/miscanthus fibers (70/30 wt %) based biocomposite was prepared in a twin screw extruder followed by injection molding. In the presence of DCP, both the flexural and the tensile strength of the PHBV/miscanthus composites were appreciably higher compared with PHBV/miscanthus composite without DCP as well as neat PHBV. The maximum tensile strength (29 MPa) and flexural strength (51 MPa) were observed in the PHBV/miscanthus composite with 0.7 phr DCP. The enhanced flexural and tensile strength of the PHBV/miscanthus/DCP composites are attributed to the improved interfacial adhesion by free radical initiator. Unlike flexural and tensile strength, the modulus of the PHBV/miscanthus/DCP composites was found to slightly lower than the PHBV/miscanthus composite. The modulus difference in the PHBV/miscanthus composite with and without DCP has good agreement with the observed crystallinity. However, the flexural and tensile modulus of all the prepared biocomposites was at least two fold higher than the neat PHBV. The storage modulus value of the PHBV/miscanthus and PHBV/miscanthus/DCP biocomposites follows similar trend like tensile and flexural modulus. The melting temperature and crystallization temperature of PHBV/DCP and PHBV/miscanthus/DCP samples were considerably lower compared with the neat PHBV and PHBV/miscanthus composites. The surface morphology revealed that the PHBV/miscanthus/DCP composites have good interface with less fiber pull‐outs compared with the corresponding counterpart without DCP. This suggests that the compatibility between the matrix and the fibers is enhanced after the addition of peroxide initiator. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44860.  相似文献   

11.
This study was performed with commercially available phenyl trimethoxysilane (PTMS) and neoalkoxytitanate [i.e., neopentyl(diallyl)oxytri(dioctyl)phosphato titanate (LICA 12)] as coupling agents. PTMS and LICA 12 were used to treat talc and kaolin to compare their effects with untreated fillers upon incorporation into polypropylene (PP). Single‐filler PP composites (containing either talc or kaolin) and hybrid‐filler composites (containing a mix of both talc and kaolin) were compounded in a twin‐screw extruder and subsequently injection‐molded into dumbbells. The incorporation of PTMS and LICA 12 slightly decreased the tensile and flexural properties in terms of modulus and strength but increased the elongation at break for both single‐filler and hybrid‐filler composites. There was also a significant improvement in the impact strength of the composites, particularly those treated with LICA 12. The hybrid composites, through the synergistic coalescence of positive characteristics from talc and kaolin with the aid from chemical treatment provided an economically advantageous material with mechanical properties comparable to those of the single‐filler‐filled PP composites. Further investigations on flow and morphological properties were also done to correlate the mechanical properties of the single‐ and hybrid‐filler‐filled PP composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Biodegradable thermoplastic‐based composites reinforced with kenaf fibers were prepared and characterized. Poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV), produced by bacterial fermentation, was selected as polymeric matrix. To improve PHBV/fibers adhesion, low amount of a proper compatibilizing agent, obtained by grafting maleic anhydride onto PHBV, was added during matrix/fibers melt mixing (reactive blending). When compared with uncompatibilized composites, the presence of the compatibilizer induces a stronger interfacial adhesion and a more pronounced improvement of the mechanical properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
The morphology and mechanical properties of isotactic polypropylene (iPP) and poly(ethylene‐co‐methyl acrylate) (EMA) blends were investigated. Various EMA copolymers with different methyl acrylate (MA) comonomer content were used. iPP and EMA formed immiscible blends over the composition range studied. The crystallization and melting reflected that of the individual components and the crystallinity was not greatly affected. The size of the iPP crystals was larger in the blends than those of pure iPP, indicating that EMA may have reduced the nucleation density of the iPP; however, the growth rate of the iPP crystals was found to remain constant. The tensile elongation at break was greatly increased by the presence of EMA, although the modulus remained approximately constant until the EMA composition was greater than 20%. EMA with a 9.0% MA content provided the optimum effect on the mechanical properties of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 175–185, 2003  相似文献   

14.
The physicomechanical properties, thermal properties, odor, and volatile organic compound (VOC) emissions of natural‐flour‐filled polypropylene (PP) composites were investigated as a function of the zeolite type and content. The surface area and pore structure of the natural and synthetic zeolites were determined by surface area analysis and scanning electron microscopy, respectively. With increasing natural and synthetic zeolite content, the tensile and flexural strengths of the hybrid composites were not significantly changed, whereas the water absorption was slightly increased. The thermal stability and degradation temperature of the hybrid composites were slightly increased with increasing natural and synthetic zeolite content. At natural and synthetic zeolite contents of 3%, the various odors and VOC emissions of the polypropylene/rice husk flour and polypropylene/wood flour hybrid composites were significantly reduced because of the absorption of the odor and VOC materials in the pore structures of the natural and synthetic zeolites. These results suggest that the addition of natural and synthetic zeolites to natural‐flour‐filled thermoplastic polymer composites is an effective method of reducing their odor and VOC emissions without any degradation of their mechanical and thermal properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000  相似文献   

16.
In this study, polycaprolactone(PCL)‐based polyurethane (PU) elastomer containing 45 wt % hard segment component was synthesized and characterized by fourier transform infrared spectroscopy, gel permeation chromatography, and X‐ray diffraction. As a toughening agent, the as‐synthesized PU was incorporated into biodegradable poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3,4)HB] by solution casting to prepare P(3,4)HB/PU composites. The microstructure and properties of P(3,4)HB/PU composites were investigated using transmission electron microscopy, X‐ray diffraction, tensile testing, scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and activated sludge degradation testing. The results show that PU can disperse well in a P(3,4)HB matrix. The elongation at break of P(3,4)HB/PU composites is remarkably increased while the yield strength and elastic modulus are decreased with an increase in PU content. At the same time, it is found that the fracture characteristic of P(3,4)HB is obviously transformed from brittleness into ductility with a gradual increase in PU loading. Moreover, the thermal stability of P(3,4)HB/PU composites is significantly improved compared with that of pure P(3,4)HB. In addition, the biodegradation rate of P(3,4)HB/PU composites is evidently reduced with the increase of PU content in the activated sludge degradation testing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42740.  相似文献   

17.
Natural rubber latex was added to composite materials formulated from a quebracho tannin adhesive crosslinked with hexamethylenetetramine and wood flour as a reinforcing filler. The final microstructure of the thermoset modified by the addition of different concentrations of latex was observed by scanning electron microscopy. The flexural and impact behavior of the modified materials was analyzed and related to the final microstructure of the composites. The effect of exposing the materials to humid environments was also evaluated. The measurements indicated that the addition of latex did not significantly reduce water absorption. However, it facilitated the preparation process of samples with low filler contents because of the increased viscosity of the mixture, which inhibited particle settling. On the other hand, the flexural properties increased with the addition of latex‐containing proteins through a reaction similar to tanning in leathers. The impact properties presented a similar trend, with the largest change occurring between 0 and 5% natural rubber in the matrix formulation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
The effect of oxidized polypropylene (OPP) as new compatibilizer on the water absorption and mechanical properties of wood flour–polypropylene (PP) composites were studied and compared with maleic anhydride grafted polypropylene (MAPP). The oxidation of PP was performed in the molten state in the presence of air. Wood flour, PP, and the compatibilizers (OPP and MAPP) were mixed in an internal mixer at temperature of 190°C. The amorphous composites removed from the mixer were then pressed into plates that had a nominal thickness of 2 mm and nominal dimensions of 15 × 15 cm2 with a laboratory hydraulic hot press at 190°C. Physical and mechanical tests showed that the wood flour–PP composites with OPP exhibited higher flexural and impact properties but lower water absorption than MAPP. All of the composites with 2% compatibilizers (OPP and MAPP) gave higher flexural and impact properties and lower water absorption compared to those with 4% compatibilizers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
As the demand for polymer‐matrix composites (PMC) expands in order to replace traditional materials, processing of the PMC is increasingly vital, as the morphology and properties are processing dependent. Typically, thermoplastic PMCs are processed in at least two heat‐intensive steps, including a pre‐compounding step in order to achieve good mixing followed by a part fabrication step. The key aim of this study is to prepare a fiberglass‐reinforced poly (trimethylene terephthalate) (FG‐PTT) composite using a one‐step, high shear melt‐processing method that achieves both compounding and part fabrication. The morphology, thermal properties, and mechanical properties are characterized to determine the effect of FG reinforcement on this renewable biopolymer. This novel method produces a FG‐PTT composite with superior mixing and tensile strength, as well as enhanced toughness, in one processing step, reducing polymer degradation and fiber attrition, as well as, time, energy, and cost requirements. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42714.  相似文献   

20.
Poly(propylene carbonate) (PPC), a CO2‐based bioplastic and poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) were melt blended followed by injection molding. Fourier transform infrared spectroscopy detected an interaction between the macromolecules from the reduction in the OH peak and a shift in the C?O peak. The onset degradation temperature of the polymer blends was improved by 5% and 19% in comparison to PHBV and PPC, respectively. Blending PPC with PHBV reduced the melting and crystallization temperatures and crystallinity of the latter as observed through differential scanning calorimetry. The amorphous nature of PPC affected the thermal properties of PHBV by hindering the spherulitic growth and diluting the crystalline region. Scanning electron micrographs presented a uniform dispersion and morphology of the blends, which lead to balanced mechanical properties. Incorporating PHBV, a stiff semi‐crystalline polymer improved the dimensional stability of PPC by restricting the motion of its polymer chains. © 2016 The Authors Journal of Applied Polymer Science Published by Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44420.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号