首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
The aim was the fabrication of glycodendrimer encapsulation agents with high proportions of cyclodextrins (CDs) to maintain the biocompatibility properties, as well as to notably improve their ability to load various suitably sized drugs. The novel glycodendrimers contained β‐CD in both core and branches, namely β‐cyclodextrin‐based dendrimer (CD‐dendrimer) prepared through a straightforward procedure using SN2 displacement to attach multivalent β‐CDs together. The desired CD‐dendrimer was synthesized in three steps: (i) reaction of β‐CD with p‐toluenesulfonyl chloride and/or iodine to afford C‐6 mono‐ and/or per‐β‐CD derivative; (ii) reaction of the β‐CD precursors with ethylenediamine to give C‐6 mono‐ and/or per‐amino‐β‐CD derivative; and (iii) SN2 displacement of β‐CD electrophilic derivative with β‐CD nucleophilic derivative in dimethylsulfoxide to provide the CD‐dendrimer. Then, the encapsulation behaviour of the CD‐dendrimer was examined using naproxen and naltrexone as the guest molecules. The structure of the designed CD‐dendrimer allowed two types of possible sites for encapsulation of the guest: in cavities of the dendritic structure and in hydrophobic cavities of CDs. © 2013 Society of Chemical Industry  相似文献   

2.
Hydrophobically modified chitosan containing β‐cyclodextrin (CD) units was synthesized by using tosylated β‐CD. The final product was characterized by Fourier transform infrared (FTIR) spectroscopy, elemental analysis and TGA, and rheometry. The polymer bearing β‐CD moieties was used to obtain crosslinked microparticles by spray‐drying which could then be used in a controlled release system for drugs. FTIR confirmed the formation of an amide linkage between cyclodextrin and chitosan. As fluorescence spectroscopy demonstrated, hydrophobic microenvironments were formed by chitosan bearing cyclodextrin in solution at lower concentrations than for chitosan. Rheometry and FTIR showed the crosslinking of the new polymer using genipin, a molecule of natural origin. Microspheres (MS) obtained by spray‐drying showed narrow size distribution when β‐CD was grafted onto chitosan and ξ‐potential of MS was slightly lower although it remained positive. In conclusion, β‐CD linked chitosan polymer can be considered as a very promising controlled drug delivery system for drugs. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
A facile, safe, and environmentally friendly approach to the preparation of poly(β‐cyclodextrin‐co‐guanidinocitrate) (ZWβCDP) via polymerization of β‐cyclodextrin (β‐CD) in the presence of guanidinocitrate as a novel cross‐linker is reported. Novel zwitterionic guanidinocitrate cross‐linker is synthesized by in situ reaction of melted guanidine and citric acid during polymerization. The structure of achieved hydrogels is characterized by attenuated total reflection‐Fourier‐transform infrared (ATR‐FTIR), X‐ray photoelectron spectroscopy, thermogravimetric analysis, differential thermogravimetric, differential scanning calorimetry (DSC), differential of DSC, and X‐ray diffraction analyses and also by Kjeldahl and colorimetric methods for elemental analyses. The swelling ratio of the anionic β‐CD polymer (ANβCDP) and ZWβCDPs is determined in water and simulated physiological media. Subsequently, the hydrogels/ciprofloxacin (CFX, as a model antibiotic drug) complexes are prepared to improve the thermal stability of CFX and define potential pharmaceutical applications of hydrogels. Solid‐state characterization of hydrogels/CFX complexes is investigated by ATR‐FTIR and DSC. The in vitro release behavior of CFX from hydrogels is investigated at simulated physiological media, which exhibit initial burst and then slow drug release. The CFX release from ZWβCDP is slower than ANβCDP.

  相似文献   


4.
The goal of this work was to investigate a possible way of crosslinking polymer chains and the potential formation of intramolecular hydrogen bonds in thermosensitive poly(N‐isopropylacrylamide‐co‐2‐hydroxypropyl methacrylate) (p(NIPAM‐HPMet)) hydrogels obtained by radical polymerization. The chemical structure of the synthesized hydrogels was investigated by Fourier transform infrared (FTIR) spectroscopy and XRD. The FTIR spectrum confirmed the presence of hydrogen bonds formed between the chains in the copolymer. XRD analysis confirmed the amorphous ? crystalline structure of the copolymer. A three‐glass transition and two melting temperatures were detected by DSC. It was found that the addition of HPMet increased the glass transition and melting temperatures of the p(NIPAM‐HPMet) copolymer. The swelling transport mechanism of p(NIPAM‐HPMet) changed from non‐Fickian at 20 °C to case III or zero‐order time‐independent kinetics characterized by a linear mass uptake with time with increasing temperature at 40 °C. © 2013 Society of Chemical Industry  相似文献   

5.
Hydrogels consisting of sodium alginate and N‐isopropylacrylamide covalently crosslinked with N,N′‐methylenebisacrylamide were prepared. The mixed‐interpenetrated networks obtained were characterized using elemental analysis, Fourier transform infrared and Raman spectroscopy, swelling measurements and environmental scanning electron microscopy. The thermo‐ and pH‐responsive properties of these hydrogels were evidenced by their swelling behaviour, which depended also on the amount of crosslinking agent and hydrogel composition. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
A series of β‐cyclodextrin‐based epoxy resins were synthesized with different epoxy equivalent weights. Their chemical structures were characterized with Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance Spectroscopy (NMR) examination. These epoxy resins were cured using L ‐arginine as a curing agent, and the degradation behavior of the cured resins was evaluated under different acidic buffer solutions at 37°C. The degradable behavior of such epoxy resins suggested potential applications as environment friendly materials. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
The swelling behavior for a series of NIPAAm/NaAMPS copolymeric hydrogels with polyelectrolytic and thermosensitive properties was investigated in various saline solutions. The swelling ratios for the present copolymeric hydrogels were affected by the saline solution, which is the result of the neutralization of the cations in the external solution with the negative charges on the polymeric side chains. The adsorption of aniline by the gels increased when the temperature was higher than the gel transition temperature, and this result showed that, when the gels were in hydrophobic state, the hydrophobic organic molecules were more easily adsorbed onto the gels. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1675–1684, 2001  相似文献   

8.
Fluorescent 2‐naphthol (NOH)‐containing β‐cyclodextrin (β‐CD)–epichlorohydrin (EP) copolymers were synthesized. Polymerization was confirmed through viscosity and FT‐IR spectroscopic measurements. Under certain conditions, the copolymers were water‐soluble (molar ratio of EP/β‐CD <22:1), while under other conditions water‐insoluble gels were formed (EP/β‐CD ≥ 22:1). Increase of the EP content to EP/β‐CD ≤ 39:1 increased the fluorescence intensity of the copolymer and shifted the emission maximum from 422 nm toward 352 nm (measured at pH ≥ 12). Further increases in the EP content resulted in a slight decrease in the fluorescence intensity. The fluorescence properties of our system at EP/β‐CD < 22 were sensitive to pH variation, while at EP/β‐CD ≥ 22 no pH effect was observed. These variations can be explained in terms of the exposure of the fluorophore to solvent in soluble versus insoluble polymers, as well as changes in the mode of association (host–guest complexation, trapping within the polymer network, covalent bonding, etc) of NOH with the polymers. Crystallographic studies on a single crystal grown in the absence of EP, but under basic conditions, suggest that host–guest complexation is not an important mode for NOH incorporation. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
Three environment friendly β‐cyclodextrin polymer electrorheological (ER) particles (NS‐β‐CDP, WSS‐β‐CDP, and CLS‐β‐CDP) were synthesized by copolymerization through a mixture of β‐cyclodextrin (β‐CD) and epichlorohydrin in the absence of starch or in the presence of water‐soluble and water‐insoluble starch, respectively. The electrorheological properties of suspensions in silicone oil were then investigated under direct current (dc) electric fields. It was found that the yield stress of the typical WSS‐β‐CDP ER fluid was 6.2 kPa in 4 kV/mm, which is 35% higher than that of NS‐β‐CDP and similar to that of CLS‐β‐CDP. In the meantime, it can display a high ER performance even over a range of 65–95°C. The structures of these polymers were characterized by FT‐IR and Raman spectrometry, respectively. The results demonstrated that all of these polymers keep the original structural character of β‐CD and the copolymerizations between starch and β‐CD indeed occur. Furthermore, it was found that there was some relationship between the characteristic strength of polymers and their dielectric properties. Hence, the improvement of copolymer dielectric properties resulted in the enhancement of ER effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1681–1686, 2004  相似文献   

10.
Concentrated inverse emulsion polymerization was used for making chromatography columns (based on crosslinked polystyrene divinylbenzene (PS‐DVB)) with pore sizes less than 10 μm. According to DSC‐thermal gravimetry thermograms, it was confirmed that the residual monomer concentration after polymerization process is negligible. For application of these columns in chiral chromatography, the β‐cyclodextrin is chemically fixed on the PS‐DVB resin pore surface. The presence of hydroxyl groups in the PS‐DVB resin after chemical modification was confirmed by FTIR spectroscopy. By chemical modification of the PS‐DVB resin, thermal stability increased up to 446°C. The structure of columns was analyzed by scanning electron microscopy (SEM). SEM evaluations showed that the porous structure of PS‐DVB resin was maintained intact after the chemical modification with β‐cyclodextrin. According to X‐ray data, presence of the crystalline domain that is related to β‐cyclodextrin is confirmed.© 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 857–863, 2006  相似文献   

11.
Poly(N‐isopropylacrylamide‐co‐sodium acrylate) gels with N,N‐methylene bisacrylamde (BIS) as crosslinker were prepared by free radical polymerization method at the temperature of 35°C, which was just around the lower critical solution temperature (LSCT) of the hydrogels. The gels synthesized at 35°C demonstrated strong swellability and fast responseability when compared with the gels synthesized at the temperature of 0 and 18°C (below the LCST) and 50 and 80°C (above the LSCT). The response rate and swelling behavior of poly(N‐isopropylacrylamide‐co‐sodium acrylate) gels was investigated and characterized by the temperature‐dependent swelling ratio and swelling and deswelling kinetics. The swelling behavior of the gels indicated that the synthesis temperature was the main factor when the swellability concerned and also had effect on the responseability of the resulting hydrogels. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
2‐Hydroxyethyl methacrylate was copolymerized with three different comonomers, methyl methacrylate (MMA), styrene (St), and N‐vinyl‐2‐pyrrolidone (NVP), respectively, to prepare porous particles crosslinked using ethylene glycol dimethacrylate (EGDMA) in the presence of an organic solvent, 1‐octanol (porogen), by means of suspension copolymerization in an aqueous phase initiated by 2,2‐azobisisobutyronitrile. Nano‐pores were observed in the particles. The pore size and the swelling properties of these particles can be controlled by changing comonomers or adjusting the crosslinker or porogen concentration. A lower crosslinker or porogen concentration favors generating smaller pores, whereas a higher concentration of a hydrophilic comonomer, higher concentration of crosslinker, and higher porogen volume ratio promote the generation of larger pores. In addition, the effects of the porous characteristics on the swelling properties were explored. The swelling capacity of the porous particles is reduced with the increase in the crosslinker concentration; however, there is a critical porogen volume ratio, in which the maximal swelling capacity is reached. Higher porosity in the particles and higher amount of hydrophilic comonomer favor a higher swelling capacity of the particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

13.
To chemically bond β‐cyclodextrin (β‐CD), which can form inclusion complexes, acrylamidomethyl CD (CD–NMA) obtained from the acid‐catalyzed reaction of N‐methylolacrylamide (NMA) and β‐CD was grafted onto cellulose fibers using CeIV as the initiator. The double‐bond content of CD–NMA increased with increase in the NMA/CD mol ratio, and a CD–NMA containing a maximum of three molecules of NMA bonded to a CD molecule could be obtained. Since the grafting condition is acidic, the hydrolytic stability of CD–NMA in aqueous nitric acid was studied. The temperature of hydrolysis proved to have a greater effect on the depletion of double bonds from CD–NMA compared with the concentration of the acid. Thus, CD–NMA was grafted onto cellulose fibers at a low temperature, and FTIR analysis of the CD–NMA‐grafted cotton fibers confirmed the chemical bonding of CD–NMA molecules to cellulose. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 438–446, 2001  相似文献   

14.
A novel linear water‐soluble β‐cyclodextrin polymer has been prepared by grafting β‐cyclodextrin on poly[(methyl vinyl ether)‐alt‐(maleic anhydride)]. First, lithium hydride was used to obtain the mono‐alkoxide β‐CD. Grafting of β‐CD derivatives to the polymer backbone was then carried out by an esterification method. Using this method, polymers containing various amounts of β‐CD were synthesized. The resulting grafted polymers were characterized by two complementary methods, 1H NMR and IR spectroscopy. The first was used to calculate the degree of substitution for the low amounts of β‐CD. The second method was very useful to evaluate the degree of substitution and the molar ratio of CD especially for high amounts of grafting. Our results indicate good agreement between both methods for intermediate rates. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
Novel dual temperature‐ and pH‐sensitive poly(acrylic acid‐co‐N‐isopropylacrylamide), AA/NIPAAm, hydrogels were successfully prepared by chemical crosslinking with crosslinkers. Copolymers of AA/NIPAAm were crosslinked in the presence of different mol % of N,N‐methylene bisacrylamide (MBA) and melamine triacrylamide (MAAm) as crosslinkers by bulk radical polymerization. The resultant xerogels were characterized by extracting the soluble fractions and measuring the equilibrium water content. Lower critical solution transition temperatures (LCST) were measured by DSC. The properties of crosslinked AA/NIPAAm series are evaluated in terms of compositional drift of polymerization, heterogeneous crosslinking, and chemical structure of the relevant components. Soluble fractions of the crosslinked networks were reduced by varying the MAAm and MBA concentrations. The influence of environmental conditions such as temperature and pH on the swelling behavior of these polymeric gels was investigated. The swelling behaviors of the resulting gels show pH sensitivity. The prepared MAAm type AA/NIPAAm hydrogels exhibited a more rapid deswelling rate than MBA type AA/NIPAAm hydrogels in ultra pure water in response to abrupt changes from 20°C to 50°C. The results of this study provide valuable information regarding the development of dual stimuli‐sensitive hydrogels with fast responsiveness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
Octavinyl polyhedral oligomeric silsesquioxane (OVPS) is used as the crosslinker instead of N,N′‐methylenebisacrylamide (BIS) to copolymerize with 2‐(dimethylamino)ethyl methacrylate (DMAEMA) or DMAEMA and N‐isopropylacrylamide (NIPAM) to prepare hybrid hydrogels: P(OVPS‐co‐DMAEMA) and P(OVPS‐co‐DMAEMA‐co‐NIPAM). The prepared hydrogels are transparent and show dual response to temperature and pH. The hydrogels were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis and tensile tests. Their mechanical properties, swelling ratio, deswelling and reswelling behaviors as well as drug release properties were investigated. The results indicate that OVPS can be incorporated into polymer networks in proportion to feed ratios. The P(OVPS‐co‐DMAEMA) hydrogel exhibits more homogeneous interior structure, higher swelling ratio and faster response than the conventional hydrogel prepared with BIS. Moreover, the incorporation of OVPS enhances the compression and tensile properties of the hydrogels. The feed ratios of OVPS and NIPAM have a great effect on volume phase transition temperature, thermal sensitivity, swelling behavior, mechanical properties and drug release properties of the hybrid hydrogels. The prepared dual‐responsive OVPS‐containing hydrogels are expected to be used as biomedical materials in drug release and tissue engineering. © 2014 Society of Chemical Industry  相似文献   

17.
A novel ion‐imprinted polymer (IIP) using (6‐O‐butene diacid ester)‐β‐cyclodextrin (β‐CD‐MAH) as the functional monomer and copper ions as the template was developed for Cu2+ sensing. First, reactive β‐cyclodextrin (β‐CD) monomers with vinyl carboxylic acid functional groups were synthesised and were co‐polymerised with styrene via radical polymerisation. Then, the β‐CD copolymers were complexed with Cu2+ in order to obtain the IIP. The imprinting effect was realised by removing the template ions from the imprinted polymer. The structure, composition and morphology of the IIP were characterised by Fourier transform IR spectroscopy, energy‐dispersive spectroscopy and field‐emission SEM. The adsorption capacity was investigated by UV–visible spectroscopy in batch operation mode. The maximum adsorption capacity for the Cu2+ template ions was 28.91 mg g?1, and the adsorption selectivity was clearly illustrated from the increased sorption affinity towards Cu2+ ions over other competing ions. The adsorption was affected by the pH of the aqueous medium, and enhanced adsorption capacity was observed at pH 5. The prepared IIP could be used 10 times after its regeneration without significant loss of the adsorption capacity. © 2018 Society of Chemical Industry  相似文献   

18.
In the present study, the temperature sensitive PVDF‐g‐NIPAAm HFM was prepared by grafting N‐isopropylacrylamide (NIPAAm) on poly(vinylidene fluoride) (PVDF) hollow fiber membrane (HFM) using a novel approach, alkaline treatment method. The structures of PVDF‐g‐NIPAAm HFM were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The effects of alkaline treatment time and grafting yield on the mechanical properties of PVDF HFM were measured and analyzed. In addition, the temperature sensitive behavior of PVDF‐g‐NIPAAm HFM and the effect of grafting yield on the temperature sensitive behavior were investigated by the flux of pure water and the rejection of ovalbumin. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 833–837, 2006  相似文献   

19.
A novel star polymer with β‐cyclodextrin (β‐CD) core and polyacrylonitrile arms and its metal complexes (Cu2+, Zn2+, and Ag+) were synthesized and characterized by means of infrared spectra, ultraviolet, GPC, X‐ray photoelectron spectroscopy, differential scanning calorimetry, cyclic voltammetry, and electron spin resonance. The results indicate that the monomers of acrylonitrile were initiated by functionalized β‐CD. The thermal properties of star polymer were improved greatly after transitional metal ions were introduced into it. The novel star polymer metal complexes possess properties of metal ions, polymer, and β‐CD. Furthermore, it shows stable electrochemical activity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号