首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Suspension‐emulsion combined polymerization process, in which methyl methacrylate (MMA) emulsion polymerization constituents (EPC) were drop wise added to styrene (St) suspension polymerization system, was applied to prepare polystyrene/poly(methyl methacrylate) (PS/PMMA) composite particles. The influences of the feeding condition and the composition of EPC on the particle feature of the resulting composite polymer particles were investigated. It was found that PS/PMMA core‐shell composite particles with a narrow particle size distribution and a great size would be formed when the EPC was added at the viscous energy dominated particle formation stage of St suspension polymerization with a suitable feeding rate, whereas St‐MMA copolymer particles or PS/PMMA composite particles with imperfect core‐shell structure would be formed when the EPC was added at the earlier or later stage of St suspension polymerization, respectively. It was also showed that the EPC composition affected the composite particles formation process. The individual latex particles would exist in the final product when the concentrations of MMA monomer, sodium dodecyl sulfate emulsifier, and potassium persulfate initiator were great in the EPC. Considering the feature of St suspension polymerization and the morphology of PS/PMMA composite particles, the formation mechanism of PS/PMMA particles with core‐shell structure was proposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Morphologies of polymer blends based on polystyrene‐b‐ polybutadiene‐b ‐poly(methyl methacrylate) (SBM) triblock copolymer were predicted, adopting the phase diagram proposed by Stadler and co‐workers for neat SBM block copolymer, and were experimentally proved using atomic force microscopy. All investigated polymer blends based on SBM triblock copolymer modified with polystyrene (PS) and/or poly(methyl methacrylate) (PMMA) homopolymers showed the expected nanostructures. For polymer blends of symmetric SBM‐1 triblock copolymer with PS homopolymer, the cylinders in cylinders core?shell morphology and the perforated lamellae morphology were obtained. Moreover, modifying the same SBM‐1 triblock copolymer with both PS and PMMA homopolymers the cylinders at cylinders morphology was reached. The predictions for morphologies of blends based on asymmetric SBM‐2 triblock copolymer were also confirmed experimentally, visualizing a spheres over spheres structure. This work presents an easy way of using PS and/or PMMA homopolymers for preparing nanostructured polymer blends based on SBM triblock copolymers with desired morphologies, similar to those of neat SBM block copolymers. © 2017 Society of Chemical Industry  相似文献   

3.
Ternary blends of PS and PMMA in a PE matrix were prepared by twin‐screw extrusion to investigate the core/shell encapsulation phenomenon in the composite droplet. The PS was found to encapsulate the PMMA to form composite droplets within the PE matrix as expected from the spreading coefficient theory. The effects of dispersed phase concentration, viscosity ratio, feeding sequence and twin‐screw operating conditions were investigated. The blend morphology was observed by scanning electron microscopy after selective extraction of either PS or PMMA, and average core and composite droplet diameters were determined by image analysis. Although it is known that the structure of composite droplet blends can be substantially altered through control of the volume fraction of the components in the dispersed phase, this study demonstrates that blends with a 1:1 composite droplet volume fraction are relatively stable to large variations in the minor phase viscosities and processing conditions. Twin‐screw extrusion thus provides a highly robust technique for the melt processing of blends possessing composite droplet morphologies. Polym. Eng. Sci. 44:749–759, 2004. © 2004 Society of Plastics Engineers.  相似文献   

4.
In this work, the compatibility of poly(methyl methacrylate) (PMMA) and polystyrene (PS) polymers with their polyhedral oligomeric silsesquioxane (POSS) copolymers combined by solution blending is investigated, to determine the effect of incorporation of the POSS unit on polymer compatibility. The morphology of these tethered POSS copolymer/polymer blends was studied by electron microscopy, thermal analysis, and density. Although the basic PS/PMMA blend was clearly immiscible, it was also found that the incorporation of POSS into the PS chain led to incompatibility when the POSScoPS copolymer was blended with PS homopolymer. However, conversely, in the case where the POSS moiety was included as part of a copolymer with PMMA, the copolymer was miscible with the PMMA homopolymer. The presence of isobutyl units on the corners of POSS cage is clearly sufficient to encourage miscibility with PMMA. Interestingly, blends of the two different POSS copolymers led to an immiscible structure, despite having the common POSS units, the interactions between the POSS moieties clearly not being sufficient to drive compatibility. The POSS copolymers have also been used as interfacial agents in immiscible PS and PMMA blend, and it has been found that the appearance of the interface bonding is improved, although the phase morphology is only slightly changed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Composite natural rubber (NR) and monodisperse poly(n-butylacrylate) (PBuA) based latex particles were tested as possible impact modifiers for a poly(methylmethacrylate) (PMMA) matrix. A continuous extrusion process was used for the incorporation of wet latexes directly into a twin-screw extruder. All latexes had been coated by a PMMA shell. Furthermore, polystyrene (PS) subinclusions were introduced into the NR core. The impact resistance of the prepared PMMA blends can be most effectively improved by NR particles containing a large weight fraction of compatibilising PMMA in the shell. The degree of crosslinking of the shell polymer has to be restricted. PBuA based latex particles of 180 nm in size are ineffective to toughen the PMMA matrix. The degree of grafting of the NR phase in core–shell particles containing PS subinclusions is not crucial. Scanning electron microscopy was used to analyse the failure processes in composite rubber particle toughened PMMA blends at fast (impact conditions) and slow (tensile testing) deformation speeds.  相似文献   

6.
In the absence of emulsifier, we prepared stable emulsifier‐free polymethylmethacrylate/polystyrene (PMMA/PSt) copolymer latex by batch method with comonomer N,N‐dimethyl, N‐butyl, N‐methacryloloxylethyl ammonium bromide (DBMEA) by using A1BN as initiator. The size distribution of the latex particles was very narrow and the copolymer particles were spherical and very uniform. Under the same recipe and polymerization conditions, PMMA/PSt and PSt/PMMA composite polymer particle latices were prepared by a semicontinuous emulsifier‐free seeded emulsion polymerization method. The sizes and size distributions of composite latex particles were determined both by quasi‐elastic light scattering and transmission electron microscopy (TEM). The effects of feeding manner and staining agents on the morphologies of the composite particles were studied. The results were as follows: the latex particles were dyed with pH 2.0 phosphotungestic acid solution and with uranyl acetate solution, respectively, revealing that the morphologies of the composite latex particles were obviously core–shell structures. The core–shell polymer structure of PMMA/PSt was also studied by 1H, 13C, 2D NMR, and distortionless enhancement by polarization transfer, or DEPT, spectroscopy. Results showed that PMMA/PSt polymers are composed of PSt homopolymer, PMMA homopolymer, and PMMA‐g‐PSt graft copolymers; results by NMR are consistent with TEM results. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1681–1687, 2005  相似文献   

7.
We investigated the effect of mixing protocol on the morphology of compatibilized polymer blends made with premade compatibilizer and reactively formed in‐situ compatibilizer in a custom‐built miniature mixer Alberta Polymer Asymmetric Minimixer (APAM). The compatibilized blends show a finer morphology than uncompatibilized blends if the polymers are mixed together in the dry state and then fed into the mixer. It is found that premelting one polymer, and premixing polymers and compatibilizer, both greatly affect the compatibilized blends' morphology. The effects are complex since the dispersed phase particle size and distribution of the compatibilized blends may be smaller or larger when compared with the uncompatibilized system, depending on the material's physical and chemical properties; for example, diblock molecular weight or the preference of copolymer to migrate to a particular phase can change the final morphology. Good mobility of the copolymer to reach the interface is crucial to obtain a finer morphology. Micelles are observed when a high molecular weight diblock copolymer P(S‐b‐MMA) is used for a PS/PMMA blend. Because of its enhanced mobility, no micelles are found for a low molecular weight diblock copolymer P(S‐b‐MMA) in a PS/PMMA blend. For PS/PE/P(S‐b‐E) blends, finer morphology is obtained when P(S‐b‐E) is first precompounded with PS. Because the block copolymer prefers the PE phase, if the P(S‐b‐E) block copolymer is compounded with PE first, some remains inside the PE phase and does not compatibilize the interface. In the case of reactive blend PSOX/PEMA, premelting and holding the polymers at high temperature for 5 min decreases final dispersed phase particle size; however, premelting and holding for 10 min coarsens the morphology. POLYM. ENG. SCI. 46:691–702, 2006. © 2006 Society of Plastics Engineers.  相似文献   

8.
In this study, polydimethylsiloxane (PDMS)/polyacrylate composite polymer latex was synthesized via polymerization of the acrylate monomer in the presence of vinyl‐containing PDMS seeded latex. The polymerization was initiated by 60Co γ‐ray irradiation. The morphology of the PDMS/polyacrylate composite polymer latex was a core–shell structure with PDMS as the core and polyacrylate as the shell. There was an interpenetration layer between the PDMS core and the polyacrylate shell. The composition of the vinyl‐containing PDMS and the PDMS/polyacrylate composite latex were investigated with NMR and Fourier transform infrared spectroscopy, respectively. The effect of irradiation dose on the seeded emulsion polymerization conversion is discussed. Finally, the mechanical properties of latex film, such as water‐absorption ratio, tensile strength, pendulum hardness, and heat‐decomposed temperature, were tested. The results showed that the mechanical properties of the PDMS/polyacrylate film were remarkably improved when compared to the polyacrylate film. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2732–2736, 2003  相似文献   

9.
Correlation between the melt rheology and phase morphology of PP/PMMA/PS ternary blends during the shell formation process were studied in detail. In this PP-matrix ternary system, theoretical predictions in agreement with the direct SEM observations demonstrated the core-shell morphology with PMMA and PS phases as core and shell phases, respectively. Morphological observations revealed that the complete shell formation takes place at about 12 and 9 wt% of PS minor phase in ternary blends composed of low and high viscosity PMMAs, respectively. In terms of rheological properties, this was corresponding to the maximum value on the storage modulus versus PS content (shell thickness) curves. Encapsulation of high viscosity PMMA core particles at lower PS contents was related to the bigger particles and low interfacial area in this system compared to the system with low viscosity PMMA core particles. At high PS contents, single and multi-core structures were observed for composite droplets of ternary blends containing low and high viscosity PMMAs, respectively. The single core morphology of low viscosity PMMA particles was related to the coalescence of core particles after the coalescence of the corresponding shells, while high viscosity PMMA cores are less likely to coalescence, leading to creation of multi-core morphology in latter system.  相似文献   

10.
In this work, a seeded soapless emulsion polymerization was carried out with crosslinking (XL) poly(methyl methacrylate) (PMMA) as seeds, styrene as monomer, and potassium persulfate (K2S2O8) as initiator to synthesize the PMMA XL–PS composite latex, which we knew as the latex interpenetrating polymer network (IPN). The morphology of the latex IPN was observed by transmission electron microscopy (TEM). It showed a core–shell structure. The kinetic data from the early stages of the reaction of seeded soapless emulsion polymerization showed that the square root of polymer yield (Wp)1/2 was proportional to the reaction time. The reaction rate decreased with the increase of crosslinking density of PMMA seeds. The core–shell model proposed in our previous work1–2 was modified to predict the conversion of polymerization over the entire course of the synthesis of PMMA (XL)–PS composite latex. Our modified core–shell kinetic model fitted well with the experimental data. © 1997 John Wiley & Sons, Inc. J Appl Polm Sci 65:425–438, 1997  相似文献   

11.
S. Shi  K. Hosoi 《Polymer》2005,46(11):3567-3570
Precipitation polymerization of acrylonitrile in aqueous phase was performed in the presence of submicrometer-sized poly(methyl methacrylate) (PMMA) seed particles. The resulting PMMA/polyacrylonitrile (PAN) composite latex particles showed a novel well-defined surface morphology like rambutan. The formation of such surface structure was ascribed to the facts that PAN polymer is crystalline and scarcely swollen by its monomer. The composite particles had a core/shell structure with a PAN shell surrounding a PMMA core.  相似文献   

12.
The effect of miscibility on elongational viscosity of polymer blends was investigated in homogeneous, miscible, and immiscible states by the blend of 1.5 wt % of ultrahigh‐molecular‐weight (UHMW) polymer. The matrix polymer was either poly(methyl methacrylate) (PMMA), or poly(acrylonitrile‐co‐styrene) (AS) that has a comparable elongational viscosity value. The homogeneous blend consisted of 98.5 wt % of PMMA and 1.5 wt % of UHMW–PMMA. The miscible blend was composed of AS and UHMW–PMMA at the same ratio. The immiscible blend was a combination of AS and UHMW–polystyrene (PS) at the same ratio. The strain‐hardening behavior of the different blends were compared with that of pure PMMA. It was demonstrated that 1.5 wt % of UHMW induces a strong strain‐hardening property in the homogeneous and miscible blends but was hardly changed in the immiscible blend. The optical microscope observation of the immiscible blend suggested that the UHMW domains were stretched, but that the degree of domain deformation was less than a given elongational strain. It was concluded that the strain‐hardening property is strongly affected by the miscibility of UHMW chain and matrix. The strong strain‐hardening property is caused by the deformation of the UHMW polymer. UHMW chains are stretched when they are entangled with surrounding polymers. However, UHMW chains in an immiscible state are not so deformed because of viscosity difference and no entanglements between domain and matrix. A smaller degree of UHMW chain deformation in immiscible state results in weaker strain‐hardening property. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 961–969, 1999  相似文献   

13.
In this work, butyl acrylate and styrene were used as monomers in the first stage and second stage of polymerization, respectively, and potassium persulfate (K2S2O8) was used as the initiator to synthesize the poly(butyl acrylate)–polystyrene (PBA/PS) composite latex by the method of two-stage soapless emulsion polymerization. The morphology of the latex particles was observed by transmission electron microscopy (TEM), which showed that the composite latex particles had a core–shell structure. The particle-size distribution of the composite latex was very uniform. A thin layer of a PBA-graft-PS copolymer was formed in between the core (PBA) and shell (PS) regions, which thus increased the compatibility between the PBA and PS phases. The process of heating and pressuring influenced the morphology, mechanical properties, and thermal properties of the PBA/PS composite polymer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 13–23, 1998  相似文献   

14.
Nick Virgilio  Basil D. Favis 《Polymer》2011,52(7):1483-1489
The activity of polystyrene-block-poly(l-lactide) (PS-b-PLLA) and polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer brushes located at a PS/PLLA interface were employed as a route to control the final microstructure of 95% void volume, ultraporous PLLA scaffolds. The latter were initially prepared from melt-processed quaternary blends of ethylene propylene diene rubber/poly(?-caprolactone)/polystyrene/poly(l-lactide) (EPDM/PCL/PS/PLLA) 45/45/5/5%vol. modified with the diblock copolymers. The blends display a layer comprised of the PS and PLLA phases located at the interface of the co-continuous EPDM and PCL phases. When the PS-b-PLLA copolymer is added, sub-micrometric PLLA droplets are encapsulated within the PS continuous layer phase. In comparison, both the PS and PLLA phases compete for the encapsulation process when the PS-b-PMMA is used, indicating that the microstructure of the PLLA phase can be fine-tuned with an adequate choice of interfacial modifier. These effects were investigated by analyzing the microstructure of ternary high-density polyethylene (HDPE)/PS/PMMA 80/10/10%vol. blends displaying PS/PMMA shell/core composite droplets in a HDPE matrix. An inversion of the shell/core structure is observed when the PS-b-PLLA copolymer is used to compatibilize the PS/PMMA interface, whereas no such restructuring occurs with the PS-b-PMMA. These effects are explained by the activity and swelling powers of the copolymer brushes. For the EPDM/PCL/PS/PLLA quaternary systems modified with the PS-b-PMMA, the PLLA homopolymer phase significantly penetrates and swells the PMMA blocks due to their mutual high affinity, as compared to the classical like-prefers-like compatibilization approach. The swelling of the blocks will tend to bend the interface toward the PS phase in order to minimize the lateral compression of the PMMA blocks. A similar effect explains the reversal of the PS/PMMA shell/core structure in the HDPE/PS/PMMA ternary system. This level of control ultimately leads to quite significant differences in microstructures and surface textures for the PLLA scaffolds.  相似文献   

15.
In this work, the mechanical strength and weld line morphology of injection molded polystyrene/poly(methyl methacrylate) (PS/PMMA) blends were investigated by scanning electron microscopy (SEM) and mechanical property test. The experimental results show that the tensile strength of PS/PMMA blends get greatly decreased due to the presence of the weld line. Although the tensile strength without the weld line of PS/PMMA (70/30) is much higher than that of the PS/PMMA (30/70) blend, their tensile strength with weld line shows reversed change. The viscosity ratio of dispersed phase over matrix is a very important parameter for control of weld‐line morphology of the immiscible polymer blend. In PS/PMMA (70/30) blend, the PMMA dispersed domains at the core of the weld line are spherically shaped, which is the same as bulk. While in the PS/PMMA (30/70) blend, the viscosity of the dispersed PS phase is lower than that of the PMMA matrix, the PS phase is absent at the weld line, and PS particles are highly oriented parallel to the weld line, which is a stress concentrator. This is why weld line strength of PS/PMMA (30/70) is lower than that of PS/PMMA (70/30) blend. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1856–1865, 2002; DOI 10.1002/app.10450  相似文献   

16.
Natural latex (NR) particles, modified with a hard shell of poly(methyl methacrylate) (PMMA) and with a substructure of PMMA (type "NR-M") or polystyrene (type "NR-SM"), were tested as compatibilizers in blends of polycarbonate (of bisphenol A, PC) and PMMA or PS. During melt blending, the modified NR particles were torn apart, from an original size of >0.5 μm down to ≅0.1 μm in diameter. Two different types of particle distribution were observed in the blends: in PC/PMMA/NR-M blends, the NR-M particles were dispersed in the PMMA phase, whereas, in PC/PS/NR-SM blends, the NR-SM particles formed interface layers between PC and PS phase domains. The latter blend morphology, distinguished by continuous rubbery interface layers of NR-SM, turned out to be mechanically excellent in injection-moulded parts. The poor impact strength of PC/PS was raised by an order of magnitude. The effect depends on the orientation in the injection-moulded test bars.  相似文献   

17.
During melt mixing a ternary blend system comprised of a high density polyethylene matrix containing dispersed polystyrene and poly(methyl-methacrylate) spontaneously forms a composite droplet structure where the PS encapsulates the PMMA. This study demonstrates that the PS/PMMA composite droplet exhibits pure PS droplet behavior at a critical volume fraction of encapsulating phase (PS:PMMA∼0.6:0.4). This critical volume fraction is shown to be independent of the overall dispersed phase concentration, shell thickness or dispersed phase size. Furthermore, the effect is observed even though the PMMA is significantly more viscous than the encapsulating PS phase. Interfacial slip as well as the maintenance of a complete PS shell during deformation are proposed as being important factors related to this behavior. The blends were prepared via melt mixing using an internal mixer and the morphology was examined by electron microscopy.  相似文献   

18.
Poly(urethane acrylate) (PUA)/poly(methylmethacrylate) (PMMA) core–shell composite particles were prepared by two-stage emulsion polymerization. The sizes of composite particles could be varied from 25 to 210 nm by introducing polyoxyethylene (POE) groups to the urethane acrylate molecular backbone. Core–shell morphology was identified by investigating the polarity of the surface of the core and shell polymer particles and by measuring the contact angle of the composite particles. A composite particle prepared with relatively small particles (about 20 nm) did not show the core/shell morphology, because the high polar surface of the core polymer particle and the low-stage ratio of the core to the shell cause the formation of a core/shell two-stage latex to be more thermodynamically unstable. The fracture toughness of rubber-toughened PMMA containing PUA/PMMA composite particles increased as the particle sizes decreased and the shell thickness of the composite particles increased. In particular, when the average size of the composite particle was about 43 nm and the stage ratio was 50/50, the fracture toughness of the rubber-toughened PMMA increased more than three times compared with that of pure PMMA. Furthermore, the transparency of toughened PMMA could be maintained up to 91% in the visible spectra range. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2291–2302, 1998  相似文献   

19.
The formation of core‐shell morphology within the dispersed phase was studied for composite droplet polymer‐blend systems comprising a polyamide‐6 matrix, ethylene‐propylene‐diene terpolymer (EPDM) shell and high density polyethylene (HDPE) core. In this article, the effect of EPDM with different molecular weights on the morphology and properties of the blends were studied. To improve the compatibility of the ternary blends, EPDM was modified by grafting with maleic anhydride (EPDM‐g‐MAH). It was found that core‐shell morphology with EPDM‐g‐MAH as shell and HDPE as core and separated dispersion morphology of EPDM‐g‐MAH and HDPE phase were obtained separately in PA6 matrix with different molecular weights of EPDM‐g‐MAH in the blends. DSC measurement indicated that there may be some co‐crystals in the blends due to the formation of core‐shell structure. Mechanical tests showed that PA6/EPDM‐g‐MAH/HDPE ternary blends with the core‐shell morphology exhibited a remarkable rise in the elongation at break. With more perfect core‐shell composite droplets and co‐crystals, the impact strength of the ternary blends could be greatly increased to 51.38 kJ m?2, almost 10 times higher than that of pure PA6 (5.50 kJ m?2). POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

20.
Ying Tao  John M. Torkelson 《Polymer》2006,47(19):6773-6781
Nanoblends, in which dispersed-phase domains exhibit length scales of order 100 nm or less, are made using a continuous, industrially scalable, mechanical process called solid-state shear pulverization (SSSP). An 80/20 wt% polystyrene (PS)/poly(methyl methacrylate) (PMMA) blend processed by SSSP and consolidated by platen pressing, without melt processing, exhibits a quasi-nanostructured morphology with many irregular, minor-phase domain sizes of ∼100 nm or less. After short-residence-time single-screw extrusion, the pulverized blend exhibits spherical dispersed-phase domains with a number-average diameter of 155 nm. Thus, SSSP followed by certain melt-processing operations can yield nanoblends. However, the pulverized blend exhibits significant coarsening of the dispersed-phase domains during long-term, high-temperature static annealing, indicating that SSSP followed by other melt processes may yield microstructured blends. In order to suppress coarsening, a styrene (S)/methyl methacrylate (MMA) gradient copolymer is synthesized by controlled radical polymerization. When 5 wt% S/MMA gradient copolymer is added to the PS/PMMA blend during SSSP, the resulting blend exhibits a nanostructure nearly identical to that of the blend without gradient copolymer, and coarsening is nearly totally suppressed during long-term, high-temperature static annealing. Thus, SSSP with gradient copolymer addition can yield compatibilized nanoblends. Morphologies obtained in the pulverized PS/PMMA nanoblend are compared with those in blends of PS/poly(n-butyl methacrylate) and PS/high-density polyethylene made using identical SSSP conditions, providing for commentary on the ability of SSSP to produce nanostructured blends as a function of blend components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号