首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The compatibilizing effects of styrene‐glycidyl methacrylate (SG) copolymers with various glycidyl methyacrylate (GMA) contents on immiscible blends of poly(trimethylene terephthalate) (PTT) and polystyrene (PS) were investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and 13C‐solid‐state nuclear magnetic resonance (NMR) spectroscopy. The epoxy functional groups in the SG copolymer were able to react with the PTT end groups (? COOH or ? OH) to form SG‐g‐PTT copolymers during melt processing. These in situ–formed graft copolymers tended to reside along the interface to reduce the interfacial tension and to increase the interfacial adhesion. The compatibilized PTT/PS blend possessed a smaller phase domain, higher viscosity, and better tensile properties than did the corresponding uncompatibilized blend. For all compositions, about 5% GMA in SG copolymer was found to be the optimum content to produce the best compatibilization of the blend. This study demonstrated that SG copolymers can be used efficiently in compatibilizing polymer blends of PTT and PS. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2247–2252, 2003  相似文献   

2.
Poly(ethylene‐co‐propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR‐graft‐GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR‐graft‐GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR‐graft‐GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR‐graft‐GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR‐graft‐GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR‐graft‐GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR‐graft‐GMA1.3 blend (1.3 indicates degree of grafting). Morphology and mechanical results showed that EPR‐graft‐GMA 1.3 was more suitable in improving the toughness of PBT. SEM results showed that the shear yielding properties of the PBT matrix and cavitation of rubber particles were major toughening mechanisms. Copyright © 2006 Society of Chemical Industry  相似文献   

3.
Interfacial agents are often used to compatibilize immiscible polymer blends. They are known to reduce the interfacial tension, homogenize the morphology, and improve adhesion between phases. In this study, two diblock copolymers of styrene/ethylene‐propylene (SEP), which have different molecular weights, were used to compatibilize a blend of syndiotactic polystyrene (sPS) 75% and ethylene‐propylene rubber (EPR) 25% so as to extend the applications of sPS as incoming thermoplastics. The morphological analysis and emulsification curve, which relates the average size of the dispersion particles to the concentration of diblock copolymers added, was used to investigate the efficiency of the interfacial agents on the blend morphology. A notched izod impact test and a tensile test were also performed to determine the compatibilization effect of different molecular weight copolymers on the mechanical properties of the blends and to establish links between morphology and mechanical properties. Results suggest that the lower molecular weight diblock copolymer showed an effective emulsifying capacity for sPS/ERP immiscible blend in morphology and mechanical properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91:3618–3626, 2004  相似文献   

4.
5.
Blends of polystyrene (PS) and polyurethane (PU) elastomer were obtained by melt mixing, using poly(styrene-co-maleic anhydride) (SMA) containing 7 wt % of maleic anhydride groups as a reactive compatibilizer. Polyurethanes containing polyester flexible segments, PU-es, and polyether flexible segments, PU-et, were used. These polyurethanes were crosslinked with dicumyl peroxide or sulfur to improve their mechanical properties. The anhydride groups of SMA can react with the PU groups and form an in situ graft copolymer at the interface of the blends during their preparation. The rheological behavior was accompanied by torque versus time curves and an increase in the torque during the melt mixing was observed for all the reactive blends, indicating the occurrence of a reaction. Solubility tests, gel permeation chromatography, and scanning electronic microscopy confirmed the formation of a graft copolymer generated in situ during the melt blending. These results also indicate that this graft copolymer contains C C bond between SMA and PU chains. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2514–2524, 2001  相似文献   

6.
The reactive compatibilization of syndiotactic polystyrene (sPS)/oxazoline‐styrene copolymer (RPS)/maleic anhydride grafted ethylene‐propylene copolymer (EPR‐MA) blends is investigated in this study. First, the miscibility of sPS/RPS blends is examined by thermal analysis. The cold crystallization peak (Tcc) moved toward higher temperature with increased PRS, and, concerning enthalpy relaxation behaviors, only a single enthalpy relation peak was found in all aged samples. These results indicate that the sPS/RPS blend is miscible along the various compositions and RPS can be used in the reactive compatibilization of sPS/RPS/EPR‐MA blends. The reactive compatibilized sPS/RPS/EPR‐MA blends showed finer morphology than sPS/EPR‐MA physical blends and higher storage modulus (G') and complex viscosity (η*) when RPS contents were increased. Moreover, the impact strength of sPS/RPS/EPR‐MA increased significantly compared to sPS/EPR‐MA blend, and SEM micrographs after impact testing show that the sPS/RPS/EPR‐MA blend has better adhesion between the sPS matrix and the dispersed EPR‐MA phase. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2084–2091, 2002  相似文献   

7.
A glycidyl azide polymer with pendent N, N‐diethyl dithiocarbamate groups (GAP‐DDC) was prepared by the reaction of poly(epichlorohydrin) (PECH) with pendent N, N‐diethyl dithiocarbamate groups (PECH‐DDC) and sodium azide (NaN3) in dimethylformamide (DMF). It was then used as a macro‐photoinitiator for the graft polymerization of methyl methacrylate (MMA). Photopolymerization was carried out in a photochemical reactor at a wavelength greater than 300 nm. Conversion was determined gravimetrically and first‐order time conversion plot for the polymerization system showed linear increase with the polymerization time indicating that polymerization proceed in controlled fashion. The molecular weight distribution (Mw/Mn) was in the range of 1.4–1.6 during polymerization. The formation of poly(methyl methacrylate‐g‐glycidyl azide) (PMMA‐g‐GAP) graft copolymer was characterized by gel permeation chromatography, FT‐IR spectroscopy, Thermogravimetric analysis, and differential scanning calorimetry. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
The polyphenylene sulfide/polyphenylene ether (PPS/PPE) alloy is desired for use as an engineering plastic. In this case, microdispersion of PPE in the PPS matrix is preferable. We have developed a new method for the preparation of a PPS/PPE alloy that has microdispersed PPE in the PPS matrix. The reactive processing of PPS with PPE gave a PPS/PPE alloy with a microdispersed PPE in the PPS matrix, using styrene‐co‐glycidyl methacrylate copolymer (SG) as a compatibilizer. Although the general properties of the PPS/PPE alloy did not depend on the PPE particle size, tensile strength at the weld part is found to be strongly dependent on PPE particle size. Only the finely dispersed PPE system gave tensile strength at the weld part comparable that of PPS. The PPS/PPE alloy shows superior property to PPS at elevated temperature and, moreover, attains the an advantage of precise molding. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3030–3034, 2002  相似文献   

9.
The phase morphology developing in immiscible poly(styrene‐co‐acrylonitrile) (SAN)/ethylene–propylene–diene monomer (EPDM) blends was studied with an in situ reactively generated SAN‐g‐EPDM compatibilizer through the introduction of a suitably chosen polymer additive (maleic anhydride) and 2,5‐dimethyl‐2,5‐di‐(t‐butyl peroxy) hexane (Luperox) and dicumyl peroxide as initiators during melt blending. Special attention was paid to the experimental conditions required for changing the droplet morphology for the dispersed phase. Two different mixing sequences (simple and two‐step) were used. The product of two‐step blending was a major phase surrounded by rubber particles; these rubber particles contained the occluded matrix phase. Depending on the mixing sequence, this particular phase morphology could be forced or could occur spontaneously. The composition was stabilized by the formation of the SAN‐g‐EPDM copolymer between the elastomer and addition polymer, which was characterized with Fourier transform infrared. As for the two initiators, the blends with Luperox showed better mechanical properties. Scanning electron microscopy studies revealed good compatibility for the SAN/EPDM blends produced by two‐step blending with this initiator. Dynamic mechanical thermal analysis studies showed that the two‐step‐prepared blend with Luperox had the best compatibility. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Properties of poly(ethylene 2,6‐naphthalate) (PEN) and its copolymers containing diethylene glycol (DEG), propanediol (PD), butanediol (BD), and bisphenol A ethoxylate (BSA) were investigated. The copolymer composition was determined by 1H‐NMR spectroscopy. It has a higher value than the feed composition due to the high volatility of ethylene glycol (EG). The melting temperature of the copolymers was gradually depressed with the increase of dialcohol in the composition. The complex viscosity of the copolymers did not depend on the molecular weight, but on the chemical structure. The complex viscosity of the copolymers containing 3 mol % of DEG, BD, and 5 mol % of BD was lower than that of PEN, and the mechanical properties were similar with the value of PEN. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2900–2905, 1999  相似文献   

11.
A new graft copolymers poly(aryl ether sulfone)‐graft‐polystyrene (PSF‐g‐PS) and poly(aryl ether sulfone)‐graft‐[polystyrene‐block‐poly(methyl methacrylate)] (PSF‐g‐(PS‐b‐PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N‐dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF‐g‐PS and two glass transition temperatures were observed in the DSC curve of PSF‐g‐(PS‐b‐PMMA). The presence of PSF in PSF‐b‐PS or PSF‐g‐(PS‐b‐PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry  相似文献   

12.
Elastomer ethylene–butylacrylate–glycidyl methacrylate (PTW) containing epoxy groups were chosen as toughening modifier for poly(butylene terephthalate) (PBT)/polyolefin elastomer (POE) blend. The morphology, thermal, and mechanical properties of the PBT/POE/PTW blend were studied. The infrared spectra of the blends proved that small parts of epoxy groups of PTW reacted with carboxylic acid or hydroxyl groups in PBT during melt blending, resulting in a grafted structure which tended to increase the viscosity and interfere with the crystallization process of the blend. The morphology observed by scanning electron microscopy revealed the dispersed POE particles were well distributed and the interaction between POE and PBT increased in the PBT/POE/PTW blends. Mechanical properties showed the addition of PTW could lead to a remarkable increase about 10‐times in impact strength with a small reduction in tensile strength of PBT/POE blends. Differential scanning calorimetry results showed with increasing PTW, the crystallization temperature (Tc) and crystallinity (Xc) decreased while the melting point (Tm) slightly increased. Dynamic mechanical thermal analysis spectra indicated that the presence of PTW could improve the compatibility of PBT/POE blends. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40660.  相似文献   

13.
Ultrafine polyamide‐6 (UPA6) with a size of 4–8 μm was prepared via jet‐milling. Blends of poly (vinyl chloride) (PVC) and UPA6 using a reactive copolymer styrene–maleic anhydride (SMA‐18%) were prepared. The change in morphology and structure of the blends were studied using differential scanning calorimetry, scanning electron microscopy, and X‐ray diffraction. The blend behavior was also determined experimentally using dynamic mechanical analysis. Contrasted to the original PA6, the crystallinity of the UPA6 decreased, the size of its crystallites were reduced, and its melting point decreased to 175°C. In all blends, PVC formed the continuous matrix phase. SMA is miscible with PVC and tends to be dissolved in the PVC phase during the earlier stages of blending. The dissolved SMA has the opportunity to react with PA6 at the interface to form the desirable SMA‐g‐PA6 copolymer. This in situ formed SMA‐g‐PA6 graft copolymer tends to anchor along the interface to reduce the interfacial tension and results in finer phase domains. Cocrystallity existed in PVC/(UPA6/SMA) at a ratio of 82/(18/5). © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 850–854, 2005  相似文献   

14.
Dynamic viscoelastic properties of blends of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with various AN contents were measured to evaluate the influence of SAN composition, consequently χ parameter, upon the melt rheology. PMMA/SAN blends were miscible and exhibited a terminal flow region characterized by Newtonian flow, when the acrylonitrile (AN) content of SAN ranges from 10 to 27 wt %. Whereas, PMMA/SAN blends were immiscible and exhibited a long time relaxation, when the AN content in SAN is less than several wt % or greater than 30 wt %. Correspondingly, melt rheology of the blends was characterized by the plots of storage modulus G′ against loss modulus G″. Log G′ versus log G″ plots exhibited a straight line of slope 2 for the miscible blends, but did not show a straight line for the immiscible blends because of their long time relaxation mechanism. The plateau modulus, determined as the storage modulus G′ in the plateau zone at the frequency where tan δ is at maximum, varied linearly with the AN content of SAN irrespective of blend miscibility. This result indicates that the additivity rule holds well for the entanglement molecular weights in miscible PMMA/SAN blends. However, the entanglement molecular weights in immiscible blends should have “apparent” values, because the above method to determine the plateau modulus is not applicable for the immiscible blends. Effect of χ parameter on the plateau modulus of the miscible blends could not be found. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The crystallization kinetics of poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) (PET/PEN) blends were investigated by DSC as functions of crystallization temperature, blend composition, and PET and PEN source. Isothermal crystallization kinetics were evaluated in terms of the Avrami equation. The Avrami exponent (n) is different for PET, PEN, and the blends, indicating different crystallization mechanisms occurring in blends than those in pure PET and PEN. Activation energies of crystallization were calculated from the rate constants, using an Arrhenius‐type expression. Regime theory was used to elucidate the crystallization course of PET/PEN blends as well as that of unblended PET and PEN. The transition from regime II to regime III was clearly observed for each blend sample as the crystallization temperature was decreased. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 23–37, 2001  相似文献   

16.
Compatibility of poly(styrene) (PS)/natural rubber (NR) blend is improved by the addition of diblock copolymer of poly(styrene) and cis‐poly(isoprene) (PS‐b‐PI). The compatibilizing effect has been investigated as a function of block copolymer molecular weight, composition and concentration. The effect of homopolymer molecular weight, processing conditions and mode of addition on the morphology of the dispersed phase have also been investigated by means of optical microscopy and scanning electron microscopy. A sharp decrease in phase dimensions is observed with the addition of a few percent of block copolymers. The effect levels off at higher concentrations. The leveling off could be an indication of interfacial saturation. For concentrations below the critical value, the particle size reduction is linear with copolymer volume fraction and agrees well with the prediction of Noolandi and Hong. The addition of the block copolymer improves the mechanical properties of the blend. An attempt is made to correlate the mechanical properties with the morphology of the blends. © 2001 Society of Chemical Industry  相似文献   

17.
The mechanical properties of polystyrene/polyamide-6 (50/50 wt/wt) blends were improved by additions of small amounts of poly(styrene-g-ethylene oxide) (SEO) during compounding by extrusion. Tensile testing of injection-molded samples revealed that the blends developed a yield point after addition of 1 wt % SEO. The elongation at break increased by almost a factor of 6, and the impact strength increased by a factor of 1.5 after adding 3 wt % SEO. Morphological analysis by electron microscopy showed that additions of SEO resulted in decreased domain sizes, and seemed to promote interfacial adhesion. The morphologies of the compatibilized blends also had a higher degree of anisotropy, as compared with the uncompatibilized blend. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1887–1891, 1998  相似文献   

18.
In this work, the compatibilization of blends of plasticized polyvinyl chloride (PVC) and polystyrene (PS) with poly(styrene‐con‐methylolacrylamide) (PSnMA) was investigated. The PSnMA was synthesized by emulsion polymerization with different amounts of n‐methylolacrylamide (nMA). Particle size and phase behavior was determined by scanning electron microscopy, and mechanical properties were determined in an Universal Testing Machine. Micrographs revealed that an appreciable size reduction of the dispersed phase was achieved when small amounts of PSnMA were added to the blend, and as the amount of nMA was increased, particle size decreased. When the (PVC/PS/PSnMA) blend was subjected to solvent extraction to remove PS and unreacted PVC, the residue showed a single Tg. Tensile modulus and the ultimate strength of the blends increased with PSnMA content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Blends of polycarbonate (PC) and acrylonitrile ‐ ethylene‐propylene‐diene‐styrene (AES) were reactive compatibilized by styrene‐maleic anhydride copolymers (SMA). The changes in phase morphology and interfacial characteristics of the blends as a function of maleic anhydride content of SMA and the concentration of compatibilizer have been systematic studied. The occurrence of reaction between the terminal hydroxyl groups of PC and the maleic anhydride (MA) of compatibilizer was confirmed by fourier transform infrared (FTIR) spectroscopy. A glass transition temperature (Tg) with an intermediate value between Tg(AES) and Tg(PC) was found on differential scanning calorimeter (DSC) curves of PC/AES blends compatibilized with SMA contains high levels of MA. Furthermore, at lower compatibilizer content, increase of the compatibilizer level in blends result in decreasing gap between two Tgs corresponding to the constituent polymers. Small angle X‐ray scattering (SAXS) test results indicated that compatibilizer concentration for the minimum of blend interface layer's thickness was exactly the same as it was when compatibilized PC/AES blend exhibited optimal compatibility in DSC test. The observed morphological changes were consistent well with the DSC and SAXS test results. A new mechanism of interfacial structural development was proposed to explain unusual phenomena of SMA compatibilized PC/AES blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42103.  相似文献   

20.
Poly(epichlorohydrin) possessing chloromethyl side groups in the main chain was used in the atom transfer radical polymerization of methyl methacrylate and styrene to yield poly(epichlorohydrin‐g‐methyl methacrylate) and poly(epichlorohydrin‐g‐styrene graft copolymers. The polymers were characterized by 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and fractional precipitation method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2725–2729, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号