首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The novel block copolymer poly(benzyl glutamate) (PBLG)–polomamer–PBLG were synthesized from glutamic acid and poloxamer in six steps with three different molecular weights, and another new block copolymer, poly(glutamic acid) (PGA)–poloxamer–PGA, was obtained by the benzyl deprotection of PBLG–poloxamer–PBLG. The obtained compounds were characterized by IR spectroscopy, gel permeation chromatography, and 1H‐NMR. The in vitro biological degradation and water absorption of PBLG showed that a greater proportion of PBLG in the copolymer led to a slower degradation and weaker water absorption, so the speed of degradation and water absorption could be adjusted through adjustment of the ratio of poloxamer. Both PBLG–poloxamer–PBLG and PGA–poloxamer–PGA exhibited lower cytotoxicity and good biocompatibility in the methyl thiazolyl tetrazolium (MTT) assay. The results show that both block polymers are promising as drug‐carrier materials. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
A series of poly[ethylene‐co‐bis(2‐ethoxy)hydroquinone terephthalate], PET‐co‐BEHQ copolymers were prepared by polymerization of various substituted bis(2‐hydroxyethyl)hydroquinones (BEHQs), dimethyl terephthalate (DMT), and ethylene glycol (EG). In addition to copolymers containing 6–16.5 mol % BEHQ, the homopolymer of BEHQ with dimethyl terephthalate, p(BEHQ‐T), was also prepared. The thermal and barrier properties of amorphous materials were studied. As the amount of comonomer was increased, the Tg and Tm of the materials decreased relative to those of PET. Oxygen permeability also decreased with increasing comonomer content. This improvement in barrier‐to‐oxygen permeability was primarily due to a decrease in solubility of oxygen in the polymer. All of the copolymers tested displayed similar oxygen diffusion coefficients. The decrease in solubility correlates with the decrease in Tg. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 934–942, 2003  相似文献   

3.
Novel aromatic poly(ether ketones) containing bulky lateral groups were synthesized via nucleophilic substitution reactions of 4,4′‐biphenol and (4‐chloro‐3‐trifluoromethyl)phenylhydroquinone (CF‐PH) with 1,4‐bis(p‐fluorobenzoyl)benzene. The copolymers were characterized by differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction, and polarized light microscopy observation. Thermotropic liquid‐crystalline behavior was observed in the copolymers containing 40, 50, 60, and 70 mol % CF‐PH. The crystalline–liquid‐crystalline transition [melting temperature (Tm)] and the liquid‐crystalline–isotropic phase transition appeared in the DSC thermograms, whereas the biphenol‐based homopolymer had only a melting transition. The novel poly(aryl ether ketones) had glass‐transition temperatures that ranged from 143 to 151°C and lower Tm's that ranged from 279 to 291°C, due to the copolymerization. The polymers showed high thermal stability, and some exhibited a large range in mesophase stability. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1347–1350, 2003  相似文献   

4.
Two series of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) triblock copolymers were prepared by the ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) and dibutylmagnesium in 1,4‐dioxane solution at 70°C. The triblock structure and molecular weight of the copolymers were analyzed and confirmed by 1H NMR, 13C NMR, FTIR, and gel permeation chromatography. The crystallization and thermal properties of the copolymers were investigated by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). The results illustrated that the crystallization and melting behaviors of the copolymers were depended on the copolymer composition and the relative length of each block in copolymers. Crystallization exothermal peaks (Tc) and melting endothermic peaks (Tm) of PEG block were significantly influenced by the relative length of PCL blocks, due to the hindrance of the lateral PCL blocks. With increasing of the length of PCL blocks, the diffraction and the melting peak of PEG block disappeared gradually in the WAXD patterns and DSC curves, respectively. In contrast, the crystallization of PCL blocks was not suppressed by the middle PEG block. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Differential scanning calorimetry (DSC) was used to evaluate the thermal behavior and isothermal crystallization kinetics of poly(ethylene terephthalate) (PET) copolymers containing 2‐methyl‐1,3‐propanediol as a comonomer unit. The addition of comonomer reduces the melting temperature and decreases the range between the glass transition and melting point. The rate of crystallization is also decreased with the addition of this comonomer. In this case it appears that the more flexible glycol group does not significantly increase crystallization rates by promoting chain folding during crystallization, as has been suggested for some other glycol‐modified PET copolyesters. The melting behavior following isothermal crystallization was examined using a Hoffman–Weeks approach, showing very good linearity for all copolymers tested, and predicted an equilibrium melting temperature (Tm0) of 280.0°C for PET homopolymer, in agreement with literature values. The remaining copolymers showed a marked decrease in Tm0 with increasing copolymer composition. The results of this study support the claim that these comonomers are excluded from the polymer crystal during growth. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2592–2603, 2006  相似文献   

6.
Summary: Liquid pool propylene/1‐butene copolymerizations were carried out in a batch reactor with a high activity Ziegler‐Natta catalyst system. Experimental runs were performed to evaluate the effect of the 1‐butene content on the crystallinity and melt temperature of the polymer resins. According to the results, 1‐butene can be significantly incorporated into the polymer chain at high polymerization rates over the whole range of copolymer compositions, leading to a decrease in the melting temperature (Tm) of the polymer, when compared to the poly(propylene) homopolymer, allowing for reduction of the sealing initiation temperature. It was observed by GPC and MFI measurements that the average molecular weights and the polydispersity index of the copolymer significantly decreased when compared to the ones obtained from poly(propylene). Despite high polymerization rates, polymer particles with good morphological features were produced in all cases. It was also observed that the absence of an external electron donor led to low crystallinity values for both the poly(propylene) homopolymer and for copolymers with different fractions of 1‐butene, when compared to literature values frequently reported for polymer resins based on 1‐butene and propylene. The obtained results indicate that a family of bulk propylene/1‐butene copolymer grades can be successfully developed for packaging and film applications.

Surface morphology and molecular weight distribution (deconvoluted into Schulz‐Flory distributions) of the propylene/1‐butene copolymer.  相似文献   


7.
The melt polycondensation reaction of N‐protected trans‐4‐hydroxy‐L ‐proline (N‐Z‐Hpr) and ?‐caprolactone (?‐CL) over a wide range of molar fractions in the feed produced new and degradable poly(N‐Z‐Hpr‐co‐?‐CL)s with stannous octoate as a catalyst. The optimal reaction conditions for the synthesis of the copolymers were obtained with 1.5 wt % stannous octoate at 140°C for 24 h. The synthesized copolymers were characterized by IR spectrophotometry, 1H NMR, differential scanning calorimetry, and Ubbelohde viscometry. The values of the inherent viscosity (ηinh) and glass‐transition temperature (Tg) of the copolymers depended on the molar fractions of N‐Z‐Hpr. With an increase in the trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) feed from 10 to 90 mol %, a decrease in ηinh from 2.47 to 1.05 dL/g, and an increase in Tg from ?48 to 49°C were observed. The in vitro degradation of these poly(N‐CBz‐Hpr‐co‐?‐CL)s was evaluated from weight‐loss measurements. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3176–3182, 2003  相似文献   

8.
In this study, slightly crosslinked poly(dimethylsiloxane)urethane‐co‐poly(methyl methacrylate) (PDMS urethane‐co‐PMMA) graft copolymers based on two diisocyanates, 2,4‐toluene diisocyanate (2,4‐TDI) and m‐xylene diisocyanate (m‐XDI), were successfully synthesized. Glass‐transition behaviors of the copolymers were investigated. Results confirm that PDMS–urethane and PMMA are miscible in the 2,4‐TDI system, but are only partially miscible in the m‐XDI system. The methylene groups adjoining the isocyanate in the m‐XDI system show increased phase‐separation behavior over the 2,4‐TDI system, in which the benzene ring adjoins the isocyanate. The functional group of PDMS–urethane improves the impact strength of the copolymers. The toughness depends on the compatibility of PDMS–urethane and PMMA segments in the copolymers. In the m‐XDI system, the impact strength of the copolymer containing 3.75 phr macromonomer achieves a maximum value (from 13.02 to 22.21 J/m). The fracture behavior and impact strength of the copolymers in the 2,4‐TDI system are similar to that of PMMA homopolymer, although they are independent of the macromonomer content in the copolymer. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1875–1885, 2002  相似文献   

9.
This paper describes the synthesis of a series of ABA‐type triblock copolymers of trimethylene carbonate and ?‐caprolactone with various molar ratios and analyses the thermal and mechanical properties of the resulting copolymers. The structures of the triblock copolymers were characterized by 1H and 13C nuclear magnetic resonance spectroscopy, FT‐IR spectroscopy and gel permeation chromatography. Results obtained from the various characterization methods proves the successful synthesis of block copolymers of trimethylene carbonate and ?‐caprolactone. The thermal properties of the block copolymers were investigated by differential scanning calorimetry. The Tm and ΔHm values of the copolymers decrease with increasing content of trimethylene carbonate units. Two Tgs were found in the copolymers. Furthermore, both of the Tg values increased with increasing content of trimethylene carbonate units. The mechanical properties of the resulting copolymers were studied by using a tensile tester. The results indicated that the mechanical properties of the block copolymers are related to the molar ratio of trimethylene carbonate and ?‐caprolactone in the copolymers, as well as the molecular weights of the resulting copolymers. The block copolymer with a molar composition of 50/50 possessed the highest tensile stress at maximum and modulus of elasticity. Block copolymers possessing different properties could be obtained by adjusting the copolymer compositions. Copyright © 2004 Society of Chemical Industry  相似文献   

10.
Poly(ethylene naphthalate) (PEN) copolymers were prepared by melt polycondensation of dimethyl naphthalate and excess ethylene glycol with 5–40 mol % (in feed) of 1,3‐propanediol or 2,2‐dialkyl‐1,3‐propanediols, where the dialkyl groups are dimethyl, diethyl, and butyl‐ethyl. No significant depression of reduced specific viscosity was observed. The comonomer contents in the copolymers are considerably higher than those in the feed. The effects of the copolymer composition on the structures of the films were investigated using thermal analyses, density measurements, X‐ray diffraction methods, and other physical tests. The crystallinities and densities of heat‐treated films decreased with increasing content of comonomer and length of alkyl side chain in the comonomer. The glass transition temperature (Tg) and melting temperature (Tm) were decreased by the copolymerization, while an increase in the length of the alkyl side chain hardly affected Tms of the heat‐treated films. Alkali resistance, moisture resistance, dye ability, and thermal shrinkage were increased by the incorporation of comonomer having an alkyl side chain. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2754–2763, 2001  相似文献   

11.
A novel aliphatic polycarbonate, poly[(propylene oxide)‐co‐(carbon dioxide)‐co‐(γ‐butyrolactone)] [P(PO? CO2? GBL)], was synthesized by the copolymerization of carbon dioxide, propylene oxide (PO) and γ‐butyrolactone (GBL). The resulting copolymers were determined by FTIR and NMR spectral analysis with viscosity‐average molecular weights (Mv) from 50 000 to 120 000 g mol?1. According to elemental analysis, the calculated data of elemental contents in P(PO? CO2? GBL)44 were close to the found data. The result showed that GBL was inserted into the backbone of poly[(propylene oxide)‐co‐(carbon dioxide)] successfully. GBL offered an ester structural unit that gave the copolymer better degradability. The correlations between reaction conditions and properties were studied. When GBL content increased, the Mv and the glass transition temperature (Tg) of the copolymers improved relative to an identical copolymer without GBL. Prolonging the reaction time of the copolymerization resulted in increases in Mv and Tg. P(PO? CO2? GBL) exhibited a high Tg above 40 °C. The rate of backbone degradation increased with increasing GBL content. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
A novel block copolymer, poly(ε‐caprolactone)‐b‐poly(4‐vinyl pyridine), was synthesized with a bifunctional initiator strategy. Poly(ε‐caprolactone) prepolymer with a 2,2,6,6‐tetramethylpiperidinyloxy (TEMPO) end group (PCLT) was first obtained by coordination polymerization, which showed a controlled mechanism in the process. By means of ultraviolet spectroscopy and electron spin resonance spectroscopy, the TEMPO moiety was determined to be intact in the polymerization. The copolymers were then obtained by the controlled radical polymerization of 4‐vinyl pyridine in the presence of PCLT. The desired block copolymers were characterized by gel permeation chromatography, Fourier transform infrared spectroscopy, and NMR spectroscopy in detail. Also, the effects of the molecular weight and concentration of PCLT on the copolymerization were investigated. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2280–2285, 2004  相似文献   

13.
Novel copolymer membranes derived from three types of adamantyl group‐containing methacrylate derivatives and 3‐methacryloxypropyltris(trimethylsiloxy)silane (SiMA) were synthesized via free radical polymerization. The thermal and permeation properties of these copolymer membranes were investigated. Copolymer membranes with less than 11.9 mol % adamantane content exhibited good membrane forming abilities that are suitable for permeation measurement. The decomposition temperature of all copolymers increased up to approximately 40–80°C with increasing adamantane content compared with poly(SiMA). Moreover, the glass transition temperature (Tg) of all copolymers increased up to approximately 46–60°C with increasing adamantane content compared with the theoretical value, which was estimated from Fox equation. 1‐Adamantyl methacrylate copolymer had the highest fractional free volume among the three types of adamantly group‐containing methacrylate derivatives. The gas permeability coefficient of this copolymer increased by 22–45% with increasing adamantane content compared with that of poly(SiMA). © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43129.  相似文献   

14.
Novel polyacrylonitrile (PAN)‐co‐poly(hydroxyethyl acrylate) (PHEA) copolymers at three different compositions (8, 12, and 16 mol % PHEA) and their homopolymers were synthesized systematically by emulsion polymerization. Their chemical structures and compositions were elucidated by Fourier transform infrared, 1H‐NMR, and 13C‐NMR spectroscopy. Intrinsic viscosity measurements revealed that the molecular weights of the copolymers were quite enough to form ductile films. The influence of the molar fraction of hydroxyethyl acrylate on the glass‐transition temperature (Tg) and mechanical properties was demonstrated by differential scanning calorimetry and tensile test results, respectively. Additionally, thermogravimetric analysis of copolymers was performed to investigate the degradation mechanism. The swelling behaviors and densities of the free‐standing copolymer films were also evaluated. This study showed that one can tailor the hydrogel properties, mechanical properties, and Tg's of copolymers by changing the monomer feed ratios. On the basis of our findings, PAN‐co‐PHEA copolymer films could be useful for various biomaterial applications requiring good mechanical properties, such as ophthalmic and tissue engineering and also drug and hormone delivery. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A series of biodegradable poly(L ‐lactide‐co‐?‐caprolactone) (PCLA) copolymers with different chemical compositions are synthesized and characterized. The mechanical properties and shape‐memory behaviors of PCLA copolymers are studied. The mechanical properties are significantly affected by the copolymer compositions. With the ?‐caprolactone (?‐CL) content increasing, the tensile strength of copolymers decreases linearly and the elongation at break increases gradually. By means of adjusting the compositions, the copolymers exhibit excellent shape‐memory effects with shape‐recovery and shape‐retention rate exceeding 95%. The effects of composition, deformation strain, and the stretching conditions on the recovery stress are also investigated systematically. A maximum recovery stress around 6.2 MPa can be obtained at stretching at Tg ? 15°C to 200% deformation strain for the PCLA70 copolymer. The degradation results show that the copolymers with higher ?‐CL content have faster degradation rates and shape‐recovery rates, meanwhile, the recovery stress can maintain a relative high value after 30 days in vitro degradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

16.
With an aim to develop injectable hydrogel with improved solution stability and enhanced bone repair function, thermogelling poly(ε‐caprolactone‐cop‐dioxanone)‐poly(ethylene glycol)‐poly(ε‐caprolactone–cop‐dioxanone) (PECP)/bioactive inorganic particle nanocomposites were successfully prepared by blending the triblock copolymer (PECP) with nano‐hydroxyapatite (n‐HA) or nano‐calcium carbonate (n‐CaCO3). The hydrogel nanocomposites underwent clear sol–gel transitions with increasing temperature from 0 to 50°C. The obtained hydrogel nanocomposites were investigated by 1H NMR, FT‐IR, TEM, and DSC. It was found that the incorporation of inorganic nanoparticles into PECP matrix would lead to the critical gelation temperature (CGT) shifting to lower values compared with the pure PECP hydrogel. The CGT of the hydrogel nanocomposites could be effectively controlled by adjusting PECP concentration or the content of inorganic nanoparticles. The SEM results showed that the interconnected porous structures of hydrogel nanocomposites were potentially useful as injectable scaffolds. In addition, due to the relatively low crystallinity of PECP triblock copolymer, the aqueous solutions of the nanocomposites could be stored at low temperature (5°C) without crystallization for several days, which would facilitate the practical applications. The PECP/bioactive inorganic particle hydrogel nanocomposites are expected to be promising injectable tissue engineering materials for bone repair applications. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

17.
The present work investigates the structure properties of copolymers using thermogravimetric analysis, hot stage microscopy, static light scattering, field emission scanning electron microscopy, X‐ray diffraction analysis and a Brookfield viscometer. Poly(potassium 1‐hydroxyacrylate) (PKHA) is a water‐soluble polymer. However, the copolymer of styrene and 2‐isopropyl‐5‐methylene‐1,3‐dioxolan‐4‐one is not water soluble at equal molar ratio because the polystyrene reduces the solubility. The effect of styrene on poly(potassium 1‐hydroxyacrylate‐co‐styrene) copolymer, i.e. poly(KHA‐co‐St), was investigated for the increasing solubility of the copolymer. The solubility was increased at a lower molar ratio of styrene such as 0.4 in the copolymer. It was found that the copolymer was soluble in water when a content ratio of 68/32 mol% of homopolymer was incorporated in poly(KHA68co‐St32) copolymer as determined by NMR analysis. Also the poly(KHA68co‐St32) copolymer was found to be salt tolerant, possessed water absorption capacity and was thermally stable up to 183 °C. Moreover, it is shown that the polystyrene content plays a key role in the thermal stability of the copolymer. © 2017 Society of Chemical Industry  相似文献   

18.
Three types of copolymers were synthesized and characterized. First, triblock ABA copolymers [where A is a homopolymer of ?‐caprolactone and B is poly(ethylene glycol)] were prepared by the ring‐opening polymerization of poly(ethylene glycol) with ?‐caprolactone in the presence of stannous octoate (Sn(Oct)2). The spectral, thermal, and mechanical properties of one sample of these copolymers were studied, and it was discovered that these types of copolymers were more hydrophilic, possessed lower melting points, and had superior mechanical properties (greater toughness) than poly(?‐caprolactone). Second, triblock ABA copolymers [where A is a homopolymer of L ‐lactide and B is poly(ethylene glycol)] were prepared by the ring‐opening polymerization of poly(ethylene glycol) with L ‐lactide in the presence of Sn(Oct)2. The mechanical properties of these copolymers were studied, and it was found that they were tougher and softer than poly(L ‐lactide). Third, novel ABA triblock copolymers [where A is a copolymer of ?‐caprolactone and L ‐lactide and B is poly(ethylene glycol)] were prepared, and 1H‐NMR and 13C‐NMR spectra of these copolymers indicated a microblock structure for the two end blocks. The stress–strain behavior revealed low yields and high toughness for these copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2072–2081, 2002  相似文献   

19.
This study was designed to determine whether the surface modifications of the various poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) [P(3HB‐co‐4HB)] copolymer scaffolds fabricated would enhance mouse fibroblast cells (L929) attachment and proliferation. The P(3HB‐co‐4HB) copolymer with a wide range of 4HB monomer composition (16–91 mol %) was synthesized by a local isolate Cupriavidus sp. USMAA1020 by employing the modified two‐stage cultivation and by varying the concentrations of 4HB precursors, namely γ‐butyrolactone and 1,4‐butanediol. Five different processing techniques were used in fabricating the P(3HB‐co‐4HB) copolymer scaffolds such as solvent casting, salt‐leaching, enzyme degradation, combining salt‐leaching with enzyme degradation, and electrospinning. The increase in 4HB composition lowered melting temperatures (Tm) but increased elongation to break. P(3HB‐co‐91 mol % 4HB) exhibited a melting point of 46°C and elongation to break of 380%. The atomic force analysis showed an increase in the average surface roughness as the 4HB monomer composition increased. The mouse fibroblasts (L929) cell attachment was found to increase with high 4HB monomer composition in copolymer scaffolds. These results illustrate the importance of a detailed characterization of surface architecture of scaffolds to provoke specific cellular responses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
Well‐defined multiarmed star random and block copolymers of ε‐caprolactone with l ‐lactide with controlled molecular weights, low polydispersities, and precise numbers of arms were synthesized by the ring‐opening polymerization of respective cyclic ester monomers. The polymers were characterized by 1H‐NMR and 13C‐NMR to determine their chemical composition, molecular structure, degree of randomness, and proof of block copolymer formation. Gel permeation chromatography was used to establish the degree of branching. Star‐branched random copolymers exhibited lower glass‐transition temperatures (Tg's) compared to a linear random copolymer. When the star random copolymers were melt‐blended with poly(l ‐lactic acid) (PLA), we observed that the elongation of the blend increased with the number of arms of the copolymer. Six‐armed block copolymers, which exhibited higher Tg's, caused the maximum improvement in elongation. In all cases, improvements in the elongation were achieved with no loss of stiffness in the PLA blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43267.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号