首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wood‐plastic composites are being increasingly examined for nonstructural or semistructural building applications. As outdoor applications become more widespread, durability becomes an issue. Ultraviolet exposure can lead to photodegradation, which results in a change in appearance and/or mechanical properties. Photodegradation can be slowed through the addition of photostabilizers. In this study, we examined the performance of wood flour/high‐density polyethylene composites after accelerated weathering. Two 24 factorial experimental designs were used to determine the effects of two hindered amine light stabilizers, an ultraviolet absorber, a colorant, and their interactions on the photostabilization of high‐density polyethyl‐ ene blends and wood flour/high‐density polyethylene composites. Color change and flexural properties were determined after 250, 500, 1000, and 2000 h of accelerated weathering. The results indicate that both the colorant and ultraviolet absorber were more effective photostabilizers for wood flour/high‐density polyethylene composites than the hindered amine light stabilizers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2609–2617, 2003  相似文献   

2.
Crosslinked polyethylene foam is widely used in packaging and as an insulation material. Finely ground waste of such crosslinked foam mesh size 7 or particle size less than 2815 μm is used as a filler in high‐density polyethylene (HDPE) of two different grades (7.5 and 21 MFI). Mechanical, thermal, and morphological properties of filled composites is studied experimentally. Waste foam powder concentration was varied up to 40% by weight basis. Impact strength of base HDPE increased by a factor of six. The overall changes in mechanical properties are similar to the crosslinking effect. It is believed that waste foam particles act as a point of entanglement with different chains of polyethylene. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 110–114, 2004  相似文献   

3.
CaCO3–polyethylene (PE) compositions, containing an ultrahigh molecular polyethylene (UHMPE) interlayer between the filler surface and the PE matrix, were synthesized by two‐step polymerization of ethylene on a filler surface activated with a suitable catalyst. The properties of the compositions were studied depending on the molecular weight of the PE matrix and the thickness of the UHMPE intermediate layer at the filler particles. It was shown that the presence of UHMPE as an interlayer in chalk–UHMPE–PE compositions leads to an increase of plastic deformation of the materials as long as the Mw value of the PE matrix is higher than is the brittleness threshold for PE. Chalk–UHMPE–PE compositions exhibit a higher ability for plastic deformation compared to chalk–PE compositions based on a PE matrix of a molecular weight equal to the molecular weight of the total polymer phase (UHMPE–PE) in the first case. There is no improvment of the mechanical properties when the UHMPE is dispersed in the compositions and not as an interlayer between a filler and a matrix. This means that the method of polymerization filling allows one to incorporate the polymer interlayer with a desired nature and properties between a filler surface and polymer matrix in filled polyolefin compositions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 577–583, 2003  相似文献   

4.
The electric self‐heating and conduction behaviors of a high‐density polyethylene/acetylene carbon black composite crosslinked with electron‐beam irradiation are studied with respect to the electric field and ambient temperature. On the basis of scaling arguments, the critical fields and current densities for the onsets of self‐heating and global electrical breakdown are discussed with respect to the intrinsic resistivity at a given ambient temperature as well as the irradiation dosage. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
The electrical‐resistivity/temperature behaviors of low‐density polyethylene (LDPE)/carbon black (CB) composites irradiated with 60Co γ rays were studied. The experimental results showed that the irradiated composites could be separated into insoluble crosslinking networks with CB (gel) and soluble components (sol) by solvent‐extraction techniques. When the sol of an irradiated LDPE/CB composite was extracted, the electrical conductivity of the system increased. The positive‐temperature‐coefficient (PTC) and negative‐temperature‐coefficient (NTC) intensities of the gels of the irradiated composites became extremely small and independent of the radiation dose. The sols and gels of the irradiated LDPE/CB composites, which had different thermal behaviors, played important roles in the appearances of the PTC and NTC effects. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 700–704, 2005  相似文献   

6.
This article reports on the morphology, melting and crystallization behavior, thermal stability, tensile properties, and thermal conductivity of phase‐change materials (PCM) for thermal energy storage. These materials were based on a soft Fischer‐Tropsch paraffin wax (PCM) blended with low‐density polyethylene, linear low‐density polyethylene, and high‐density polyethylene. These immiscible blends were melt‐mixed with copper (Cu) microparticles (up to 15 vol %) to improve the thermal conductivity in the matrix material. The presence of the Cu microparticles in the PCMs did not significantly change the crystallization behavior, thermal stability, or tensile properties of the blend composites in comparison with the corresponding polyethylene/wax blends and polyethylene/Cu composites. The observed differences were related to the fact that the wax seemed to have a higher affinity for the Cu particles than any of the polyethylenes, and so it crystallized as a layer around the Cu particles. The thermal conductivity of the samples increased almost linearly with increasing Cu content, but the samples had slightly lower values than the corresponding polyethylene/Cu composites, probably because of the lower thermal conductivity of the wax. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
We performed surface modification of ultra‐high‐molecular‐weight polyethylene (UHMWPE) through chromic acid etching, with the aim of improving the performance of its composites with poly(ethylene terephthalate) (PET) fibers. In this article, we report on the morphology and physicomechanical and tribological properties of modified UHMWPE/PET composites. Composites containing chemically modified UHMWPE had higher impact properties than those based on unmodified UHMWPE because of improved interfacial bonding between the polymer matrix and the fibers and better dispersion of the fibers within the modified UHMWPE matrix. Chemical modification of UHMWPE before the introduction of PET fibers resulted in composites exhibiting improved wear resistance compared to the base material and compared to unmodified UHMWPE/PET composites. On the basis of the morphological studies of worn samples, microploughing and fatigue failure associated with microcracking were identified as the principle wear mechanisms. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

8.
A thermally conductive linear low‐density polyethylene (LLDPE) composite with silicon carbide (SiC) as filler was prepared in a heat press molding. The SiC particles distributions were found to be rather uniform in matrix at both low and high filler content due to a powder mixing process employed. Differential scanning calorimeter results indicated that the SiC filler decreases the degree of crystallinity of LLDPE, and has no obvious influence on the melting temperature of LLDPE. Experimental results demonstrated that the LLDPE composites displays a high thermal conductivity of 1.48 Wm?1 K?1 and improved thermal stability at 55 wt % SiC content as compared to pure LLDPE. The surface treatment of SiC particles has a beneficial effect on improving the thermal conductivity. The dielectric constant and loss increased with SiC content, however, they still remained at relatively low levels (<102 Hz); whereas, the composites showed poorer mechanical properties as compared to pure LLDPE. In addition, combined use of small amount of alumina short fiber and SiC gave rise to improved overall properties of LLDPE composites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Nano‐ZnO/high‐density polyethylene (HDPE) composite films were prepared via melt blending and a hot compression‐molding process. The properties, including ultraviolet absorption, mechanical and antibacterial properties of the films, and plasticizing behavior of the composites, were investigated. The results show that the absorbance in the ultraviolet region of the HDPE films was enhanced after the addition of modified nano‐ZnO to the HDPE matrix. Also, we found that improvement in the HDPE films of the tensile strength and elongation at break was achieved by the incorporation of modified ZnO nanoparticles up to 0.5 wt % in contrast with the original nano‐ZnO/HDPE composite films. Antibacterial testing was carried out via plate counting, and the results indicate that the HDPE films doped with modified ZnO nanoparticles showed favorable antibacterial activity, especially for Staphylococcus aureus. However, the low doped content of modified nano‐ZnO in the HDPE matrix made the balance torque of the composites increase slightly. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The time–temperature superposition principle was applied to the viscoelastic properties of a kenaf‐fiber/high‐density polyethylene (HDPE) composite, and its validity was tested. With a composite of 50% kenaf fibers, 48% HDPE, and 2% compatibilizer, frequency scans from a dynamic mechanical analyzer were performed in the range of 0.1–10 Hz at five different temperatures. Twelve‐minute creep tests were also performed at the same temperatures. Creep data were modeled with a simple two‐parameter power‐law model. Frequency isotherms were shifted horizontally and vertically along the frequency axis, and master curves were constructed. The resulting master curves were compared with an extrapolated creep model and a 24‐h creep test. The results indicated that the composite material was thermorheologically complex, and a single horizontal shift was not adequate to predict the long‐term performance of the material. This information will be useful for the eventual development of an engineering methodology for creep necessary for the design of structural building products from these composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1995–2004, 2005  相似文献   

11.
Paper samples of three different qualities were extrusion coated with low‐density polyethylene (LDPE) and high‐density polyethylene (HDPE). The morphological phases of the polyethylene layers have been quantified by 13C solid‐state high‐resolution NMR. Shear forces in the process initiate the formation of the monoclinic crystallites. The surface tensions of the high‐density papers have influence on the degree of interaction between the two materials and how these shear forces work. The paper surface properties will thus have an influence on properties and the size of the monoclinic crystalline mass fraction of the polyethylene coating. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 226–234, 2004  相似文献   

12.
Understanding the sequence of reactions that occur in ultra‐high‐molecular‐weight polyethylene (UHMWPE) following 60Co γ irradiation has been the focus of numerous experimental studies. In the study reported here, we have incorporated recent experimental findings into a mathematical model for UHMWPE oxidation. Simulation results for shelf aging and accelerated aging are presented. It is shown that very reasonable simulations of shelf‐aging and accelerated‐aging data can be obtained. It is also shown that simulations of shelf aging in reduced oxygen environments predict that the subsurface peaks of ketones will be shifted to the exterior surface. In vivo aging can be simulated if we assume that the oxygen level in the synovial fluid is about one‐eighth that of atmospheric levels. Some reduced irradiation doses are predicted to significantly reduce the ketone formation for shelf‐aging periods of up to 10 years. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 814–826, 2003  相似文献   

13.
Oxo‐biodegradation of polyethylene has been well studied with different pro‐oxidants and it has been shown that pro‐oxidants have limited role in the oxidation of polyethylene and do not have any role in microbial growth. However, in few recent studies, montmorillonite clay has been reported to promote the growth of microbes by keeping the pH of the environment at levels conducive to growth. In an attempt to improve the overall oxo‐biodegradation of polyethylene, montmorillonite nanoclay has been used in this study along with a pro‐oxidant. Film samples of oxo‐biodegradable polyethylene (OPE) and oxo‐biodegradable polyethylene nanocomposite (OPENac) were subjected to abiotic oxidation followed by microbial degradation using microorganism Pseudomonas aeruginosa. The progress of degradation was followed by monitoring the chemical changes of the samples using high‐temperature gel permeation chromatography (GPC) and infrared spectroscopy (FTIR). The growth of bacteria on the surface of the polymer was monitored using environmental scanning electron microscopy. GPC data and FTIR results have shown that the abiotic oxidation of polyethylene is influenced significantly by the pro‐oxidant but not by nanoclay. But, the changes in molecular weight distribution and FTIR spectra for the biodegraded samples indicate that the growth rate of P. aeruginosa on OPENac is significantly greater than that on OPE. It indicates that nanoclay, by providing a favourable environment, helps in the growth of the microorganism and its utilisation of the polymer surface and the bulk of the polymer volume. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
The production of smoke, carbon monoxide (CO), and carbon dioxide (CO2) were investigated with cone calorimetry testing when low‐density polyethylene (LDPE), LDPE treated with an intumescent flame retardant (IFR), and LDPE treated with an IFR and ultrafine zinc borate (UZB) combusted under irradiation. The results of the testing showed that UZB could depress smoke production and reduce the amount of CO and CO2. The components of the pyrolytic gas and its contents were identified and measured with pyrolysis–gas chromatography/mass spectrometry (Py–GC–MS) when LDPE, LDPE/IFR, and LDPE/IFR/UZB were pyrolyzed at 400°C for 20 s. The Py–GC–MS results implied that UZB had an important influence on the components and contents of the pyrolytic gas of LDPE/IFR. UZB mechanisms of smoke suppression and toxicity reduction with respect to LDPE/IFR are proposed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
The melt rheological analysis of high‐density polyethylene reinforced with vapor‐grown carbon nanofibers (VGCNFs) was performed on an oscillatory rheometer. The influence of frequency, temperature, and nanofiber concentration (up to 30 wt %) on the rheological properties of composites was investigated. Specifically, the viscosity increase is accompanied by an increase in the elastic melt properties, represented by the storage modulus G′, which is much higher than the increase in the loss modulus G″. The composites and pure PE exhibit a typical shear thinning behavior as complex viscosity decreases rapidly with the increase of shearing frequency. The shear thinning behavior is much more pronounced for the composites with high fiber concentration. The rheological threshold value for this system was found to be around 10 wt % of VGCNF. The damping factor was reduced significantly by the inclusion of nanofibers into the matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 155–162, 2004  相似文献   

16.
In China, rice‐hull powder is widely used as a fiber component to reinforce polymers because of its ready availability and lower cost compared to wood fibers. However, an issue concerning these composites is their weathering durability. In this study, the effects of two ultraviolet absorbers (UVAs), UV‐326 and UV‐531, on the durability of rice‐hull/high‐density polyethylene (HDPE) composites were evaluated after the samples were exposed to UV‐accelerated weathering tests for up to 2000 h. All of the samples showed significant fading and color changes in exposed areas. X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to detect surface chemical changes. The results indicate that surface oxidation commenced immediately within the first 500 h of exposure for all of the samples. However, the control rice‐hull/HDPE composites underwent a greater degree of oxidation than those with the UVAs. Scanning electron microscopy revealed that the rice‐hull/HDPE composites degraded significantly upon accelerated UV aging, with dense cracking on the exposed surface. The UVAs provided effective protection for the rice‐hull/HDPE composites, and UV‐326 had a more positive effect on the color stability than UV‐531. The results reported herein serve to enhance our understanding of the efficiency of UV stabilizers in the protection of rice‐hull/HDPE composites against UV radiation, with a view toward improving their formulation. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Low‐density polyethylene (LDPE) was filled with blends of different proportions of two sizes of calcium carbonate (CaCO3; 600 and 2500 mesh). The torque of the LDPE/CaCO3 samples was measured with a torque rheometer. The results showed that the process torque values of the LDPE/CaCO3 samples obviously decreased when LDPE was filled with a blend of two sizes of CaCO3 (600‐ and 2500‐mesh CaCO3 blend) in comparison with samples filled with CaCO3 of a single size (600 or 2500 mesh). When the ratio of 600‐mesh CaCO3 to the total CaCO3 was in the range of 40–60 wt %, the lowest torque value of the LDPE/CaCO3 samples was achieved. When the content of CaCO3 in a sample was 30 wt %, LDPE filled with CaCO3 of different size distributions showed the largest decrease in the torque ratio in comparison with the samples filled with CaCO3 of a single size. The torques of LDPE samples filled with CaCO3 of a single size and those filled with CaCO3 of different size distributions at different temperatures were also studied. The results showed that the flow activation energy and flow activation entropy of LDPE samples filled with CaCO3 of different size distributions increased obviously. The increase in the flow activation entropy was used to explain the phenomenon of the process torque decreasing for LDPE samples filled with CaCO3 of different size distributions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The water absorption pattern and associated dimensional changes and solid loss of oil palm fiber–linear low density polyethylene composites was studied. The effects of fiber size (425–840, 177–425, and 75–177 μ), fiber loading (0, 10, 20, 30, 40, and 50%), and time of immersion (192 h at an interval of 24 h) on these parameters were also studied. Alkali treatment of fibers was done to reduce the hydrophilic nature of the composites and its effect was studied. It was found that the water absorption in most of the combinations followed typical Fickian behavior. The rate of water absorption and swelling increased with fiber loading. However, alkali treatment of the fibers resulted in a reduction of water absorption at higher fiber loadings only, and composites with higher fiber sizes exhibited higher water absorption. A sharp increase in the thickness swelling was observed in the initial days of immersion, which remained constant thereafter. The thickness swelling also increased with fiber size; however, a constant trend was not observed for the 75–177 μ fiber size. In addition to thickness swelling, composites also expanded linearly during water absorption; however, linear expansion was considerably less than thickness swelling. Higher fiber loading and alkali treatment caused more linear expansion. We observed that maximum solid loss on water immersion occurred with small‐sized and also alkali‐treated fiber composites. An increase in thickness and a decrease in linear dimension were observed after one sorption–desorption cycle. This irreversible change was also found to be proportional to fiber loading and alkali treatment. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Polymer matrix composites are generally studied in the form of bulk solids, and very few works have examined composite fibers. The research described here extended such bulk studies to fibers. The question is whether or not what has been reported for bulk polymers will be the same in fibers. In this article are reported studies of high‐density polyethylene (HDPE), whereas those of linear low‐density polyethylene are reported in part II of this article series. Two types of filler were used, that is, organically modified montmorillonite (OMMT), in which the nanosized filler particles had a high aspect ratio, and microsized calcium carbonate (CaCO3), with an aspect ratio nearer to unity. Composite fibers of both as‐spun and highly drawn forms were prepared, and their structures, morphology, and mechanical properties were studied. It was found that the microsized particles gave HDPE composite fibers with mechanical properties that were the same as those of the neat polymer. In the case of clay composite fibers, the clay interfered with the yield process, and the usual yield point could not be observed. The particle shape did not affect the mechanical properties. The fibers showed different deformation morphologies at low draw ratios. The CaCO3 composite fibers showed cavities, which were indicative of low interaction between the polymer and the filler. The OMMT composite fibers showed platelets aligned along the fibers and good polymer–filler interaction. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

20.
The rheological behavior, thermal properties, and molecular mobility of a series of maleic anhydride (MA) grafted high‐density polyethylenes were characterized and evaluated. The rheological behavior was studied with a Haake minilaboratory. The viscosity of the samples in their melt state decreased with an increase in the graft yield, and this could be attributed to the higher molecular mobility for samples with a higher degree of grafting. The thermal properties were investigated with dynamic mechanical analysis and differential scanning calorimetry. Positron annihilation lifetime measurements were used to study the effect of the degree of grafting on the chemical environment and the atomic‐scale free‐volume properties. It was found that the grafted MA group played a significant chemical inhibition role in positronium formation when the graft yield was low. The results also indicated that the higher the degree of grafting was, the broader the free‐volume distribution was. The relationship between the microstructure and rheological behavior is discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号