首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel polyimides was prepared from various diamines (with bisphenol units) and various aromatic tetracarboxylic dianhydrides via a two‐step (thermal imidization) method. The monomers and polymers were produced in high yields. The benzophenone series exhibited better solubility than the pyromellitic series and, especially, those with the alkyl (methyl)‐substituted ring exhibited good solubility and could be readily dissolved in polar aprotic solvents such as dimethylformamide and N,N′dimethylacetamide. The glass transition temperatures of all polyimides were found to be 235–322 and 223–332°C, respectively, by DSC and dynamic mechanical analysis. Thermogravimetric analyses indicated that the polymers were fairly stable up to 482–617°C (10 wt % loss in N2) and 480–610°C (10 wt % loss in air). Wide‐angle X‐ray diffractograms revealed that most polyimides were predominantly amorphous. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 945–952, 2003  相似文献   

2.
The properties of borosiloxane‐containing copolyimides with borosiloxane in the main chain and in the side chain were studied. Two series of borosiloxane‐containing copolyimides were synthesized by the reaction of 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA ) and 2,3′,3,4′‐biphenyltetracarboxylic dianhydride (a‐BPDA ) with p ‐phenylenediamine (PDA ), 4,4′‐oxydialinine (4,4′‐ODA ) and different borosiloxane diamine monomers (BSiAs ). The synthesized borosiloxane‐containing copolyimides exhibited better solubility than borosiloxane‐free copolyimides and showed high glass transition temperatures (320–360 °C), excellent thermal stability (570–620 °C for T 10), great elongation at break (10% ? 14%) and a low coefficient of thermal expansion (14–24 ppm °C?1). More specifically, the copolyimides containing BSiA‐2 formed nano‐scale protrusions and the copolyimides containing BSiA‐1 formed micro‐scale protrusions. The contact angles of the copolyimides increased from 72° for neat copolyimide to 96° for 5% of borosiloxane in the main chain of the copolymer up to 107° for 10% of borosiloxane in the side chain of the copolymer. © 2017 Society of Chemical Industry  相似文献   

3.
A series of silylene–acetylene preceramic polymers 3a–e were synthesized by polycondensation reaction of dilithioacetylene with dichlorosilane (H2SiCl2) or/and methyldichlorosilane (MeSiHCl2). Their structures were confirmed by infrared spectra (IR), and 1H and 29Si NMR spectroscopies. Differential scanning calorimetry (DSC) diagrams show exotherms centered at 200 to 233°C temperature range, attributed to crosslinking reaction of the acetylene and Si? H groups. After thermal treatment, the obtained thermosets 4a–e possess excellent thermal stability. Thermogravimetric analysis (TGA) under nitrogen show the Td5s (temperature of 5% weight loss) for all the thermosets are above 600°C, and the overall char yields are between 95.62% and 89.67% at 900°C. After pyrolysis at 1200°C, the obtained ceramic residues 5a–e exhibit good thermo‐oxidative stability with final weight retention between 98.76% and 91.66% at 900°C under air. In particular, perhydroploy(silylene)ethynylene 3a , which has the highest Si/C ratio in silylene–acetylene polymers, has the highest char yield, and the derived ceramic material 5a displays the best thermo‐oxidative stability. Based on Scanning electron microscopy and its associated energy‐dispersive X‐ray microanalysis (SEM EDX) and 13C magic angle spinning nuclear magnetic resonance (MAS NMR) analysis, ceramic 5a contains the highest SiC content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

4.
A series of fluorinated polyamides was prepared directly by low‐temperature polycondensation of a new cardo diacid chloride, 9,9‐bis[4‐(4‐chloroformylphenoxy)phenyl]xanthene (BCPX), with various diamines containing trifluoromethyl substituents in N,N‐dimethylacetamide (DMAc). Almost all polyamides showed excellent solubility in amide‐type solvents such as DMAc and could also be dissolved in pyridine, m‐cresol, and tetrahydrofuran. These polymers had inherent viscosities between 0.77 and 1.31 dL g?1, and their weight‐average molecular weights and number‐average molecular weights were in the range of 69,000–102,000 and 41,000–59,000, respectively. The resulting polymers showed glass transition temperatures between 240–258°C and 10% weight loss temperatures ranging from 484°C to 517°C and 410°C to 456°C in nitrogen and air, respectively, and char yields at 800°C in nitrogen higher than 55%. All polymers were amorphous and could be cast into transparent, light‐colored, and flexible films with tensile strengths of 81–100 MPa, elongations at break of 8–12%, and tensile modulus of 1.6–2.1 GPa. These polymers had low‐dielectric constants of 3.34–3.65 (100 kHz), low‐moisture absorption in the range of 0.76–1.91%, and high transparency with an ultraviolet–visible absorption cut‐off wavelength in the 322–340 nm range. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
In this work, fluorine‐containing copolyimides were synthesized from 6FDA dianhydride and different ratios of BisAAF and PPD diamines. Properties, such as composition, viscosity, dielectric constant, glass‐transition temperature, thermal decomposition temperature, tensile characteristics, and transmittance, were investigated by using elemental analysis, viscometry, Fourier transform infrared spectrometry, differential scanning calorimetry, a thermogravimetric analyzer, a tensile tester, and UV–visible spectrophotometry. After curing at 300°C for 1 h, imidization was observed, as indicated the appearance of an absorption peak of the carbonyl of the imide at 1780 cm?1 (C?O asymmetry stretching). The inherent viscosity increased with an increasing PPD mole fraction, from 0.40 dL/g of pure 6FDA‐BisAAF to 0.84 dL/g of pure 6FDA‐PPD. The dielectric constant decreased with increasing fluorine content. The glass‐transition temperature increased with an increasing PPD mole fraction; the values increased from 317°C with pure 6FDA‐BisAAF polyimide to 364°C with pure 6FDA‐PPD polyimide. The 5% weight loss temperature (Td) of the copolyimides was around 530°C in air and 540°C in a nitrogen atmosphere. The tensile modulus and tensile strength gradually increased with an increasing PPD molar fraction. The transmittance of 6FDA‐BisAAF‐PPD copolyimides was greater than 90% at wavelengths above 500 nm. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2064–2069, 2005  相似文献   

6.
A new diamine 5,5′‐bis[4‐(4‐aminophenoxy)phenyl]‐hexahydro‐4,7‐methanoindan ( 3 ) was prepared through the nucleophilic displacement of 5,5′‐bis(4‐hydroxylphenyl)‐hexahydro‐4,7‐methanoindan ( 1 ) with p‐halonitrobenzene in the presence of K2CO3 in N,N‐dimethylformamide (DMF), followed by catalytic reduction with hydrazine and Pd/C in ethanol. A series of new polyamides were synthesized by the direct polycondensation of diamine 3 with various aromatic dicarboxylic acids. The polymers were obtained in quantitative yields with inherent viscosities of 0.76–1.02 dl g−1. All the polymers were soluble in aprotic dipolar solvents such as N,N‐dimethylacetamide (DMAc) and N‐methyl‐2‐pyrrolidone (NMP), and could be solution cast into transparent, flexible and tough films. The glass transition temperatures of the polyamides were in the range 245–282 °C; their 10% weight loss temperatures were above 468 °C in nitrogen and above 465 °C in air. © 2000 Society of Chemical Industry  相似文献   

7.
Two series of heterocyclic aromatic polymers were synthesized from 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthaltic anhydride) and 2,2′‐bis(3,4‐dicarboxyphenyl)hexafluoropropane dianhydride by two‐step method. The inherent viscosities were in the range of 24–45 cm3/g. The effects of the rigid benzoxazole group in the backbone of copolymer on the thermal, mechanical, and physical properties were investigated. These polymers exhibit good thermal stability. The temperatures of 5% weight loss (T5) of these polymers are in the range of 403–530°C in air and 425–539°C in nitrogen. The chard yields of these polymers are in the range of 15–24% in air and 54–61% in nitrogen. These polymers also have high glass‐transition temperatures and a low coefficient of thermal expansion and good mechanical properties. The poly(benzoxazol imide) has a higher tensile strength and modulus than those of neat polyimide. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
A new diacid containing optically active functional groups, N,N′‐(4,4′‐diphthaloyl)‐bis‐L ‐leucine diacid ( 3 ), was synthesized and used in a preparation of a series of poly(amide‐imide)s (PAIs) by direct polycondensation with various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP). All polymers derived from diacid ( 3 ) were highly organosoluble in the solvents like N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, γ‐butyrolactone, cyclohexanone, and chloroform at room temperature or upon heating. Inherent viscosities of the PAIs were found to range between 0.34 and 0.61·dL g?1. All the PAIs afforded flexible and tough films. The glass‐transition temperatures of these PAIs were recorded between 212 and 237°C by differential scanning calorimetry, and the 10% weight loss temperatures were ranging from 372 to 393°C and 336–372°C under nitrogen and air, respectively. The polyimide films had a tensile strength in the range of 63–88 MPa and a tensile modulus in the range of 1.2–1.7 GPa. Optically active PAIs exhibited specific rotations in the range of ?10.58° to ?38.70°. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Three new siloxane containing grafted copolyimides have been prepared by one‐pot solution imidization technique. The polymers are made by the reaction of 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride) (BPADA) with commercially available diamine 4,4′‐oxydianiline (ODA) with variation of silicon containing diamine, namely 3,5‐diaminobenzoate terminated polydimethylsiloxane (DBPDMS), as a comonomer to 10, 20, and 30 wt %. The films of the polymers were prepared by casting the polymer solution in dichloromethane. The polymers have been well‐characterized by GPC, IR, and NMR techniques. Thermal stabilities and decomposition behavior of the copolyimides were studied by DSC and TGA. The water contact angle values of the films indicate hydrophobic nature of the polymers. Thermal, flame retardant, mechanical, and surface properties of these polymers have been compared with the homopolyimide and with polyimides where polysiloxane is incorporated in the main chain. DSC revealed melting of the grafted siloxane chain at sub‐ambient temperature and a glass transition corresponding to the main polymer chain above 200°C. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Two novel monomers, 9,9‐bis[4‐(4‐carboxyphenoxy)phenyl]xanthene (BCAPX) and 9,9‐bis[4‐(4‐aminophenoxy)phenyl]xanthene (BAPX) were prepared in two main steps starting from nucleophilic substitution of 9,9‐bis(4‐hydroxyphenyl)xanthene (BHPX) with p‐fluorobenzonitrile and p‐chloronitrobenzene, respectively. Using triphenyl phosphite and pyridine as condensing agents, two series of polyamides containing xanthene cardo groups with the inherent viscosities (0.82–1.32 dL/g) were prepared by polycondensation from BCAPX with various aromatic diamines or from BAPX with various aromatic dicarboxylic acids in an N‐methyl‐2‐pyrrolidone (NMP) solution containing dissolved calcium chloride, respectively. All new polyamides were amorphous and readily soluble in various polar solvents such as N,N‐dimethylformamide (DMF), NMP, N,N‐dimethylacetamide (DMAc) and pyridine. These polymers showed relatively high glass transition temperatures between 264 and 308°C, decomposition temperatures at 10% weight loss ranging from 502 to 540°C and 488 to 515°C in nitrogen and air, respectively, and char yields at 800°C in nitrogen higher than 56%. Transparent, flexible, and tough films of these polymers cast from DMAc solutions exhibited tensile strengths ranging from 86 to 109 MPa, elongations at break from 13 to 22%, and initial moduli from 2.15 to 2.63 GPa. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
A series of poly(arylene ether)s ( 7a–7f ) were successfully synthesized by aromatic nucleophilic substitution reactions of imidoaryl biphenol (5), 4,9‐bis‐(4‐hydroxy‐phenyl)‐2‐phenyl‐benzo[f]isoindole‐1,3‐dione with six different trifluoromethyl substituted bisfluoro monomers ( 6a–6f ). The weight‐average molar masses of the polymers were up to 280 kD as measured by GPC. These poly(arylene ether)s exhibited glass transition temperatures up to 361°C in DSC. These polymers showed very high thermal stability up to 558°C for 10% weight loss under synthetic air in TGA. Except 7d–7f, remaining polymers 7a–7c were soluble in a wide range of organic solvents. Transparent thin films of these polymers cast from DCM or NMP exhibited tensile strengths up to 75 MPa and elongation at break up to 41% depending on their exact repeating unit structures. These poly(arylene ether)s showed cut‐off wavelength in between 400 and 450 nm except 7d and water absorption were in the range of 0.4 to 0.6%. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Polyacrylonitrile (PAN) and copolymer of acrylonitrile–vinyl acids prepared by solution polymerization technique have been characterized by Differential Scanning Calorimetry (DSC) (under dynamic as well as isothermal conditions), themograviemetric analysis (TGA), and on‐line DSC‐FTIR spectroscopy. The DSC of copolymers was carried out at 5°C/min in nitrogen and air. In nitrogen atmosphere the DSC exotherm show a very sharp peak, whereas, in air atmosphere DSC exotherm is broad, and starts at a much lower temperature compared to what is observed in nitrogen atmosphere. The initiation temperature of PAN homopolymer is higher than that for the copolymers. For instance, the initiation temperature of PAN in air is 244°C, whereas, the onset of exothermic reaction is in the range of 172 to 218°C for acrylonitrile–vinyl acid copolymers. As the vinyl acid content increases the ΔH value reduces. The ΔH value of PAN in air was 7025 J/g, whereas, for P(AN‐AA) with 5.51 mol % of acid it was 3798 J/g. As the content of acrylic acid comonomer is increased to 17.51 mol % the value of ΔH decreases further to 1636 J/g. The same trend was observed with MAA and IA as well. DSC‐FTIR studies depict various chemical changes taking place during heat treatment of these copolymers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 685–698, 2003  相似文献   

13.
A new imide‐containing dicarboxylic acid based on a twisted binaphthylene unit, 2,2′‐bis(N‐trimellitoyl)‐1,1′‐binaphthyl (1), was synthesized from 1,1′‐binaphthyl‐2,2′‐diamine and trimellitic anhydride in glacial acetic acid. The structure of compound 1 was fully characterized with spectroscopic methods and elemental analysis. Series of thermally stable and organosoluble poly(amide imide)s (4a–4d) and poly(ester imide)s (5a–5d) with similar backbones were prepared by the triphenyl phosphite and diphenylchlorophosphate activated direct polycondensation of diimide dicarboxylic acid 1 with various aromatic diamines and diols, respectively. With due attention to the structural similarity of the resulting poly(amide imide)s and poly(ester imide)s, most of the differences between these two block copolyimides could be easily attributed to the presence of alternate amide or ester linkages accompanied by imide groups in the polymer backbone. The ultraviolet maximum wavelength values of the yellowish polymers were determined from their ultraviolet spectra. The crystallinity of these copolyimides was estimated by means of wide‐angle X‐ray diffraction, and the resultant polymers exhibited a nearly amorphous nature, except for the polymers derived from benzidine and 4,4′‐binaphthol. The poly(amide imide)s exhibited excellent solubility in a variety of highly polar aprotic solvents, whereas the poly(ester imide)s showed good solubility in less polar solvents. According to differential scanning calorimetry analyses, polymers 4a–4d and 5a–5d had glass‐transition temperatures between 331 and 357°C and between 318 and 342°C, respectively. The thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis, and the 10% weight loss temperatures of the poly(amide imide)s and poly(ester imide)s were between 579 and 604°C and between 566 and 577°C in nitrogen, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3203–3211, 2006  相似文献   

14.
Polysilphenylenesiloxanes containing various amounts of vinyl substituents (ranging from partial (25 %) to complete (100 %)) on the silicon atoms were synthesized. 29Si NMR spectroscopy revealed that they had a well defined structure, as designed. Unlike the known crystalline poly(tetramethyl‐p‐silphenylenesiloxane), all polymers containing vinyl side groups were amorphous and showed low Tgs, ranging from ?52 to ?32 °C (from differential scanning calorimetry (DSC)). Dynamic and isothermal thermogravimetric (TG) analyses indicated that they all possessed a greatly improved thermal stability up to 500 °C, and have ultra‐high residual yields at 1000 °C under both inert and oxidative conditions. Polysilphenylenesiloxanes containing a high percentage of vulcanizable vinyl substituents should be excellent candidates for high‐temperature polymers and have potential applications such as heat‐resistant or flame‐retardant materials. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
The thermal stability of glucose oxidase (GOD) in solutions containing water‐soluble hydrolyzed polyacrylonitrile (HPAN) and polyoxyethylene (POE) was studied as a function of time and temperature between 28 and 60°C. The results were compared with the thermal stability of GOD in solutions without polymers. The polymers studied were found to increase the enzyme thermal stability. The influence of the concentration of the water‐soluble polymers on enzyme thermal stability was also studied. The best protection effect on enzyme thermal stability had 3 wt % solution of HPAN and 1 wt % solution of polyoxyethylene. Solutions with higher concentrations led to a quick deactivation of the enzyme. It was proved that the effect of 3 wt % HPAN solution was stronger than the effect of 1 wt % POE (59.0 versus 52.0%). The thermal transition of the enzyme was studied in both the presence and the absence of HPAN by DSC. The melting temperature of GOD in the presence of HPAN was shifted to an 11°C higher value. This sustained the supposition that HPAN increases the thermostability of GOD. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1393–1397, 2003  相似文献   

16.
A series of new, organosoluble, and light‐colored poly(amide imide imide)s were synthesized from tetraimide dicarboxylic acid ( I ) and various aromatic diamines by direct polycondensation with triphenyl phosphite and pyridine as condensing agents. I was prepared by the azeotropic condensation of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride, m‐aminobenzoic acid, and 4,4′‐oxydianiline at a 2/2/1 molar ratio in N‐methyl‐2‐pyrrolidone (NMP)/toluene. The thin films cast from N,N‐dimethylacetamide (DMAc) had cutoff wavelengths shorter than 400 nm (365–394 nm) and color coordinate b* values between 13.10 and 36.07; these polymers were lighter in color than the analogous poly(amide imide)s and isomeric polymers. All of the polymers were readily soluble in a variety of organic solvents, including NMP, DMAc, N,N‐dimethylformamide, dimethyl sulfoxide, and even less polar dioxane and tetrahydrofuran. The cast films exhibited tensile strengths of 90–104 MPa, elongations at break of 7–22%, and initial moduli of 1.9–2.4 GPa. The glass‐transition temperatures of the polymers were recorded at 274–319°C. They had 10% weight losses at temperatures beyond 520°C and left more than a 50% residue even at 800°C in nitrogen. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 669–679, 2003  相似文献   

17.
A new monomer of tetraimide‐dicarboxylic acid (IV) was synthesized by starting from ring‐opening addition of 4,4′‐oxydiphthalic anhydride, trimellitic anhydride, and 1,4‐bis(4‐amino‐2‐trifluoromethylphenoxy)benzene at a 1:2:2 molar ratio in N‐methyl‐2‐pyrrolidone (NMP). From this new monomer, a series of novel organosoluble poly(amide‐imide‐imide)s with inherent viscosities of 0.7–0.96 dL/g were prepared by triphenyl phosphite activated polycondensation from the tetraimide‐diacid with various aromatic diamines. All synthesized polymers were readily soluble in a variety of organic solvents such as NMP and N,N‐dimethylacetamide, and most of them were soluble even in less polar m‐cresol and pyridine. These polymers afforded tough, transparent, and flexible films with tensile strengths ranging from 99 to 125 MPa, elongations at break from 12 to 19%, and initial moduli from 1.6 to 2.4 GPa. The thermal properties and stability were also good with glass‐transition temperatures of 236–276°C and thermogravimetric analysis 10 wt % loss temperatures of 504–559°C in nitrogen and 499–544°C in air. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2854–2864, 2006  相似文献   

18.
Homopolymers and copolymers of poly(arylene ether nitrile) (PAEN)‐bearing pendant xanthene groups were prepared by the nucleophilic substitution reaction of 2,6‐difluorobenzonitrile with 9,9‐bis(4‐hydroxyphenyl)xanthene (BHPX) and with various molar proportions of BHPX to hydroquinone (100/0 to 40/60) with N‐methyl‐2‐pyrrolidone (NMP) as a solvent in the presence of anhydrous potassium carbonate. These polymers had inherent viscosities between 0.61 and 1.08 dL/g, and their weight‐average molecular weights and number‐average molecular weights were in the ranges 34,200–40,800 and 17,800–20,200, respectively. All of the PAENs were amorphous and were soluble in dipolar aprotic solvents, including NMP, N,N‐dimethylformamide, and N,N‐dimethylacetamide and even in tetrahydrofuran and chloroform at room temperature. The resulting polymers showed glass‐transition temperatures (Tg's) between 220 and 257°C, and the Tg values of the copolymers were found to increase with increasing BHPX unit content in the polymer. Thermogravimetric studies showed that all of the polymers were stable up to 422°C with 10% weight loss temperatures ranging from 467 to 483°C and char yields of 54–64% at 700°C in nitrogen. All of the new PAENs could be cast into transparent, strong, and flexible films with tensile strengths of 106–123 MPa, elongations at break of 13–17%, and tensile moduli of 3.2–3.7 GPa. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
A series of block and random copolyimide films were synthesized from various molar ratios of two diamines, rigid 2‐(4‐aminophenyl)‐5‐aminobenzimidazole (APBI) and flexible 4,4′‐oxydianiline (ODA) by polycondensation with dianhydride 3,3′,4,4′‐biphenyltetracarboxylic dianhydride. The contents of APBI ranged from 10 to 60 mol % in copolyimides. The copolyimide films obtained by thermal imidization of poly(amic acid) solutions, were characterized by TMA, DMA, TGA, DSC, wide‐angle X‐ray diffraction, FTIR, tensile testing, water uptake (WU), and dielectric constant measurements. Rigid heterocyclic diamine APBI with interchain hydrogen bonding capability, led to low coefficient of thermal expansion (CTE), high Tg, high thermal stability and better mechanical properties. Increasing the APBI mol % caused a gradual decrease in the CTE and increase in Tg, thermal stability and tensile strength properties of the copolyimides films. Moreover, significantly enhanced thermal and mechanical properties of the block copolyimides were also found as compared to random copolyimides. The block copolyimide with APBI content of 60 mol %, achieved excellent properties, that is, a low CTE (4.7 ppm/K), a high Tg at 377°C, 5% weight loss at 562°C and a tensile strength at 198 MPa. This can be interpreted because of comparatively higher degree of molecular orientation in block copolyimides. These copolyimides also exhibited better dielectric constant and WU. This combination of properties makes them attractive candidates for base film materials in future microelectronics. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

20.
Novel soluble copolyimides containing phenyl and hydroxyl pendant groups were synthesized from pyromellitic dianhydride (PMDA) and two diamines, 2,6‐diamino‐4‐phenylphenol (DAPP) and 4,4′‐oxydianiline (ODA), in various ratios via thermal imidization. The structures and physical properties of the copolyimides were characterized by FTIR, elemental analysis, DSC, dynamic mechanical analysis (DMA), TGA, a universal testing machine for stress–strain behaviour, and a dielectric analyzer to study the effect of DAPP on the physical properties of the modified polymers. Copolyimides containing more than 40 mol% DAPP were soluble in hot N‐methyl‐2‐pyrrolidone (NMP), dimethylacetamide (DMAc) and dimethylformamide (DMF), and possessed a high glass transition temperature (358 °C) and a high modulus (3.9 GPa). Introduction of the diamine DAPP could also reduce the dielectric constant. A segment of imide linkages could convert to benzoxazole linkages by decarboxylation at temperatures higher than 420 °C under vacuum. Although the heat‐treated polybenzoxazoles (PBOs) exhibited many good properties, they were found to be too rigid and brittle to be processable for microelectronic applications. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号