首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxymethylene-linked (2-vinylpyridine-oxyethylene) multiblock copolymers were prepared by coupling telechelic α,ω-dihydroxypoly(2-vinylpyridine) (THPVP) and poly(ethylene oxide) (PEO), using dichloromethane as coupling agent and KOH as catalyst. THPVP was synthesized by polymerization of 2-vinylpyridine in tetrahydrofuran/benzene using 1-methylnaphthyllithium as anionic initiator, followed by capping with ethylene oxide and termination by methanol. The effects of charging weight ratio of PEO/THPVP, copolymerization time and molecular weight of PEO or THPVP on the copolymerization were studied. The copolymers were characterized by IR, 1H NMR, membrane osmometry, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC).  相似文献   

2.
Amphiphilic (oxyethylene–oxypropylene) and (oxyethylene–styrene) multiblock copolymers, both with high molecular weights, were synthesized by coupling poly(ethylene glycol) (PEG) with poly(propylene glycol) (PPG) or with telechelic dihydroxy polystyrene using 2,4‐toluene diisocyanate as a coupling agent, respectively. The polymerization conditions were investigated. The products were purified and characterized by IR, 1H‐NMR spectroscopy, and membrane osmometry and identified as multiblock copolymers. Crystallinity of the two kinds of multiblock copolymers was determined by DSC. They showed good emulsifying properties. Their complexes with LiClO4 showed high room‐temperature conductivities from 3 × 10−5 to 4 × 10−4 S/cm at 30°C. High molecular weight (oxyethylene–oxypropylene) multiblock copolymers, at a weight ratio of PEG/PPG = 6/4, behave like thermoplastic elastomers. The (oxyethylene–styrene) copolymer functions as a good compatibilizer for the blend of chlorohydrin rubber and polystyrene. An amount of only 3 wt %, based on the blend, is needed to increase the tensile strength of the blend almost sixfold. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95: 1295–1301, 2005  相似文献   

3.
Amphiphilic copolymers of butyl acrylate (BA) and methyl methacrylate (MMA) with uniform polyoxyethylene (PEO) grafts were synthesized by the copolymerization of BA and MMA with a methacrylate‐terminated PEO macromer in benzene with azobisisobutyronitrile as an initiator. The effects of various copolymerization conditions on the grafting efficiency and molecular weight of the copolymers, as well as the effect of the copolymerization time on the conversions of the macromer and the monomers, were reported. The copolymers, with uniform PEO grafts, were purified by successive extractions with water and ether/acetone (3/7) to remove unreacted macromer and ungrafted copolymers of MMA and BA, respectively. The purified graft copolymers were characterized with IR, 1H‐NMR, membrane osmometry, gel permeation chromatography, and differential scanning calorimetry. The highest grafting efficiency was about 90%, and molecular weight of the copolymers varied around 105. The average grafting number of the copolymer was about 10. A study of the crystalline properties, emulsifying properties, phase‐transfer catalytic ability, and mechanical properties of the graft copolymers showed that the emulsifying volume decreased with the increasing molecular weight of the PEO grafts but increased with the PEO content. The conversion of potassium phenolate in the Williamson solid–liquid reaction obviously increased with an increasing PEO content of the graft copolymers. The crystallinity of the graft copolymers increased with the PEO content of the graft copolymers or the molecular weight of the macromer used. The copolymers, prepared under certain conditions, behaved as thermoplastic elastomers. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2982–2988, 2003  相似文献   

4.
A series of amphiphilic graft copolymers, PE‐graft‐PEO, containing hydrophobic polyethylene (PE) as the backbone and hydrophilic poly(ethylene oxide) (PEO) as the side‐chain, have been synthesized by a novel route. The graft structure and the molecular weight, as well as the molecular weight distribution of the graft copolymer can easily be controlled. The molecular weight of the side‐chain PEO is proportional to the reaction time and the monomer concentration, which indicates the ‘living’ character of the anionic polymerization of ethylene oxide. The produced copolymers PE‐graft‐PEO were characterized by 1H NMR and DSC measurements. Copyright © 2004 Society of Chemical Industry  相似文献   

5.
Butadiene-oxyethylene multiblock copolymers were synthesized via coupling reaction of telechelic α,ω-dihydroxypolybutadiene (PB) and poly(ethylene glycol) with tolylene-2,4-diisocyanate. The poly(oxyethylene) (PEO) content of the purified copolymer was determined by elemental analysis and the structural parameters were calculated from number-average molecular weights of the purified copolymer, determined by membrane osmometry, and those of the prepolymers, determined by vapor pressure osmometry. The total number of blocks varied from 60 to 100. Transmission electron microscopy showed the existence of multiphases in the copolymer. Wide angle X-ray diffraction indicated that the crystallinity increased from 0 to 50% with increasing weight ratio of PEO/PB. These multiblock copolymers exhibit excellent emulsifying properties, as compared to the multiblock copolymers or graft copolymer of oxyethylene and styrene. Only 0.1 g of polymer was needed to make 100 mL of a water/toluene (9:1, w/w) mixture form an emulsion completely. When the weight ratio of water/toluene was changed from 9:1 to 7:3 or the molecular weight of PEG from 6000 to 2000, the oil-in-water type emulsion was changed to water-in-oil type. The copolymers also showed a good phase transfer catalytic effect when applied to the Williamson reaction. Conversion of potassium phenolate into butyl phenolate reached over 95% when the multiblock copolymer containing 3 mmol of PEO was used for 1 g potassium phenolate, whereas no reaction occurred without using the multiblock copolymer at 90°C for 4 h.  相似文献   

6.
The synthesis of polyacrylonitrile‐block‐poly(ethylene oxide) (PAN‐b‐PEO) diblock copolymers is conducted by sequential initiation and Ce(IV) redox polymerization using amino‐alcohol as the parent compound. In the first step, amino‐alcohol potassium with a protected amine group initiates the polymerization of ethylene oxide (EO) to yield poly(ethylene oxide) (PEO) with an amine end group (PEO‐NH2), which is used to synthesize a PAN‐b‐PEO diblock copolymer with Ce(IV) that takes place in the redox initiation system. A PAN‐poly(ethylene glycol)‐PAN (PAN‐PEG‐PAN) triblock copolymer is prepared by the same redox system consisting of ceric ions and PEG in an aqueous medium. The structure of the copolymer is characterized in detail by GPC, IR, 1H‐NMR, DSC, and X‐ray diffraction. The propagation of the PAN chain is dependent on the molecular weight and concentration of the PEO prepolymer. The crystallization of the PAN and PEO block is discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1753–1759, 2003  相似文献   

7.
A series of well‐defined and property‐controlled polystyrene (PS)‐b‐poly(ethylene oxide) (PEO)‐b‐polystyrene (PS) triblock copolymers were synthesized by atom‐transfer radical polymerization, using 2‐bromo‐propionate‐end‐group PEO 2000 as macroinitiatators. The structure of triblock copolymers was confirmed by 1H‐NMR and GPC. The relationship between some properties and molecular weight of copolymers was studied. It was found that glass‐transition temperature (Tg) of copolymers gradually rose and crystallinity of copolymers regularly dropped when molecular weight of copolymers increased. The copolymers showed to be amphiphilic. Stable emulsions could form in water layer of copolymer–toluene–water system and the emulsifying abilities of copolymers slightly decreased when molecular weight of copolymers increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 727–730, 2006  相似文献   

8.
Radical polymerization was used to synthesize three copolymers of [3‐(methacryloylamino)propyl]trimethylammonium chloride and methacrylic acid [P(MPTA‐co‐MA)]; three copolymers of MPTA and 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid [P(MPTA‐co‐APSA)], which had different feed monomer mole ratios but a constant total number of moles (0.03 mol); and the homopolymers poly(MPTA), poly(MA), and poly(APSA). The yields for all homopolymers and copolymers were over 70 and 90%, respectively. All products were dissolved in water, purified, and fractioned by an ultrafiltration membrane with different exclusion limits of the molecular weight (3,000, 10,000, 30,000, and 100,000 g mol?1). All fractions were lyophilized. The polymeric materials were characterized by FTIR and 1H‐NMR spectroscopy. The metal ion interaction with the hydrophilic polymers was determined as a function of the pH and the filtration factor. It was dependent on the pH, type of ligand group, and charge of the metal ion. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1715–1721, 2003  相似文献   

9.
ABCBA-type amphiphilic block copolymers comprising polydimethylsiloxane (PDMS), poly(ethylene oxide) (PEO), and heparin segments were synthesized by coupling reactions between end-functionalized oligomers. These multiblock copolymers were characterized to examine bulk properties using 1H-NMR, FTIR, end-group analysis, and sulfur elemental analysis. Block copolymers were further characterized in bulk using differential scanning calorimetry and X-ray diffraction measurements. The PDMS glass transition remains unchanged with increasing PEO content, indicating coexistence of pure PDMS with mixed phases. Furthermore, endothermic melting of the block copolymers shifts to higher temperatures and becomes more intense with increasing PEO molecular weight. Additionally, the crystallinity of the PEO segment in the block copolymers increases with increasing PEO molecular weight. The PEO melting endotherm peak shifts from near 318 to 323 K with annealing. In the cooling thermogram, the block copolymers exhibit two crystallization exotherms, one near 303 K and the other near 193 K, attributed to PEO and PDMS recrystallization and nucleation, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
In this article, a new kind of biodegradable poly(ε‐caprolactone)‐poly(ethylene glycol)‐poly(ε‐caprolactone)‐based polyurethane (PCEC‐U) copolymers were successfully synthesized by melt‐polycondensation method from ε‐caprolactone (ε‐CL), poly(ethylene glycol) (PEG), 1,4‐butanediol (BD), and isophorone diisocyanate (IPDI). The obtained copolymers were characterized by 1H‐nuclear magnetic resonance (1H‐NMR), FTIR, and gel permeation chromatography (GPC). Thermal properties of PCEC‐U copolymers were studied by DSC and TGA/DTG under nitrogen atmosphere. Water absorption and hydrolytic degradation behavior of these copolymers were also investigated. Hydrolytic degradation behavior was studied by weight loss method. 1H‐NMR and GPC were also used to characterize the hydrolytic degradation behavior of PCEC‐U copolymers. The molecular weight of PCL block and PEG block in soft segment and the content of hard segment strongly affected the water absorption and hydrolytic degradation behavior of PCEC‐U copolymers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Combination of cationic, redox free radical, and thermal free radical polymerizations was performed to obtain linear and star polytetramethylene oxide (poly‐THF)‐polymethyl methacrylate (PMMA)/polystyrene (PSt) multiblock copolymers. Cationic polymerization of THF was initiated by the mixture of AgSbF6 and bis(4,4′ bromo‐methyl benzoyl) peroxide (BBP) or bis (3,5,3′,5′ dibromomethyl benzoyl) peroxide (BDBP) at 20°C to obtain linear and star poly‐THF initiators with Mw varying from 7,500 to 59,000 Da. Poly‐THF samples with hydroxyl ends were used in the methyl methacrylate (MMA) polymerization in the presence of Ce(IV) salt at 40°C to obtain poly(THF‐b‐MMA) block copolymers containing the peroxide group in the middle. Poly(MMA‐b‐THF) linear and star block copolymers having the peroxide group in the chain were used in the polymerization of methyl methacrylate (MMA) and styrene (St) at 80°C to obtain PMMA‐b‐PTHF‐b‐PMMA and PMMA‐b‐PTHF‐b‐PSt linear and star multiblock copolymers. Polymers obtained were characterizated by GPC, FT‐IR, DSC, TGA, 1H‐NMR, and 13C‐NMR techniques and the fractional precipitation method. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 219–226, 2004  相似文献   

12.
Amphiphilic copolymers of ethyl acrylate (EA) with uniform polyoxyethylene (PEO) grafts were synthesized by copolymerization of EA with methacrylate terminated PEO macromer in benzene using azobisisobutyronitrile as the initiator. The effects of the molecular weight of the macromers, the charging weight ratio of the macromer to EA, the total monomer concentration, and the amount of initiator on the grafting efficiency (GE) were reported as was the molecular weight of the copolymers. The highest GE reached to above 90% and the molecular weight of the copolymers varied from (5–15) × 104. The reactivity ratio of EA with the macromer was determined to be 0.83. The graft copolymers were purified with extractions and the purified products were characterized with IR, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and membrane osmometry. The average grafting number of the copolymer varied from 2 to 11. The glass‐transition temperature of the poly(EA) in the copolymer was increased because of the partial compatibility of the two components. The crystalline property, emulsifying property, and dilute solution viscosity of the graft copolymers, as well as ionic conductivity of their complexes with alkali metal salts, were studied. The emulsifying volume decreased with the increasing molecular weight of the PEO grafts. The addition of NaOH to the emulsion affected the emulsifying volume only slightly, whereas the addition of HCl changed the oil in water type emulsion into a water in oil type. The conductivity of the LiClO4 complex of the copolymer with an oxyethylene/Li ratio of 20 reached 3.7 × 10?5 S/cm at 27°C. The lower the crystallinity of the complex, the higher was the conductivity. The dilute solution viscosity showed the existence of intramolecular microphase separation. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 903–912, 2001  相似文献   

13.
A series of new amphiphilic poly[methyl(3,3,3‐trifluoropropyl) siloxane]‐b‐poly(ethyleneoxide) (PMTFPS‐b‐PEO) diblock copolymers with different ratio of hydrophobic segment to hydrophilic segment were prepared by coupling reactions of end‐functional PMTFPS and PEO homopolymers. PMTFPS‐b‐PEO diblock copolymers synthesized were shown to be well defined and narrow molecular weight distributed by characterizations such as NMR, GPC, and FTIR. Additionally, the solution properties of these diblock copolymers were investigated using tensiometry and transmission electron microscopy. Interestingly, the critical micellization concentration increases with increasing length of hydrophobic chain. Transmission electron microscopy studies showed that PMTFPS‐b‐PEO diblock copolymers in water preferentially aggregated into vesicles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
Novel, monodispersed, and well‐defined ABA triblock copolymers [poly(dimethylamino ethyl methacrylate)–poly(ethylene oxide)–poly(dimethylamino ethyl methacrylate)] were synthesized by oxyanionic polymerization with potassium tert‐butanoxide as the initiator. Gel permeation chromatography and 1H‐NMR analysis showed that the obtained products were the desired copolymers with molecular weights close to calculated values. Because the poly(dimethylamino ethyl methacrylate) block was pH‐ and temperature‐sensitive, the aqueous solution behavior of the polymers was investigated with 1H‐NMR and dynamic light scattering techniques at different pH values and at different temperatures. The micelle morphology was determined with transmission electron microscopy. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
A series of triblock co‐polymers, consisting of a poly(ethylene glycol) (PEG) central block joined to two blocks of random p‐dioxanone‐co‐L ‐lactide copolymers were synthesized by ring‐opening polymerization of p‐dioxanone (PDO) and L ‐lactide (LLA) initiated by PEG in the presence of stannous 2‐ethylhexanoate catalyst. The resulting copolymers were characterized by various techniques including 1H and 13C NMR and FTIR spectroscopies, gel permeation chromatography, inherent viscosity, wide‐angle X‐ray diffractometry (WAXD) and differential scanning calorimetry (DSC). The conversion of PDO and L ‐lactide into the polymer was studied various mole ratios and at different polymerization temperature from 1H NMR spectra. Results of WAXD and DSC showed that the crystallinity of PEG macroinitiator was greatly influenced by the composition of PDO and L ‐lactide in the copolymer. The triblock copolymers with low molecular weight were soluble in water at below room temperature. © 2003 Society of Chemical Industry  相似文献   

16.
Water‐soluble polyphenol‐graft‐poly(ethylene oxide) (PPH‐g‐PEO) copolymers were prepared using grafting‐through methodology. Polyphenol chains were synthesized via enzymatic polymerization of phenols, and the graft chains were synthesized via living anionic polymerization of ethylene oxides. The polymers were characterized using gel permeation chromatography, static light scattering and 1H NMR, infrared and ultraviolet spectroscopies. The PPH‐g‐PEO graft copolymers are soluble in several common solvents, such as water, ethanol, N,N‐dimethylformamide, tetrahydrofuran and methylene dichloride. The solubility of the PPH‐g‐PEO graft copolymers is improved significantly compared with that of polyphenol. Copyright © 2009 Society of Chemical Industry  相似文献   

17.
In this exploration of novel biodegradable polyesters, multiblock copolymers based on poly(butylene succinate) (PBS) and poly(1,2‐propylene terephthalate) (PPT) were successfully synthesized with hexamethylene diisocyanate as a chain extender. The amorphous and rigid PPT segment was chosen to modify PBS. The structures of the polymers were characterized using 1H NMR and 13C NMR spectroscopy, gel permeation chromatography and wide‐angle X‐ray diffraction; the physical properties were investigated using thermogravimetric analysis, differential scanning calorimetry, mechanical testing and enzymatic degradation. The results indicate that the copolymers possess satisfactory mechanical and thermal properties, with impact strength 186% higher than that of PBS homopolymer, while tensile strength, flexural strength, thermal stability and melting point (Tm) are slightly decreased. Crystallization and biodegradation rates are still acceptable at 5 wt% PPT, although they are decreased by the introduction of PPT. The addition of appropriate amounts of PPT can improve the impact strength effectively without an obviously deleterious effect on tensile strength, flexural strength, thermal stability, Tm, crystallization rate and biodegradability. This study describes a convenient route to novel multiblock copolymers comprising crystallizable aliphatic and amorphous aromatic polyesters, which are promising for commercialization as biodegradable materials. Copyright © 2011 Society of Chemical Industry  相似文献   

18.
Kasala Dayananda  Doo Sung Lee 《Polymer》2008,49(21):4620-4625
A series of novel pH- and temperature-sensitive multiblock poly(ester amino urethane)s were synthesized. The copolymers were characterized by 1H NMR, FT-IR and GPC. In the multiblock copolymers, the tertiary amino groups of the poly(amino urethane) segments act as pH-responsive moieties, while the PCL-PEG-PCL blocks act as biodegradable and temperature-sensitive segments. At a relatively high pH (7.0 or above), the multiblock copolymer aqueous solution showed a sol-to-gel-to-aggregation transition with increasing temperature. In contrast, at a lower pH (below 7.0), the polymer solution always existed as a sol state within the experimental temperature range. The gel window covers the physiological conditions. After subcutaneous injection of the 20 wt% multiblock copolymer solutions into mice, polymeric hydrogels were formed in situ in a short time. The in vitro release of an anticancer drug, paclitaxel, persisted over 1 month under physiological conditions.  相似文献   

19.
Amphiphilic thermo‐responsive multiblock polycarbonates consisting of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) were facilely synthesized using triphosgene as coupling agent. The structures and molecular characteristics of the polycarbonates were confirmed by 1H‐NMR, FT‐IR and Gel permeation chromatography (GPC). The crystallization behavior and thermal properties of the polycarbonates were studied using X‐ray diffraction (XRD), Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Surface tension measurements confirmed that the critical micelles concentration of polymeric micelles were concentration ranges, which varied from about 2–70 mg/L to 5–40 mg/L with increasing PEO/PPO composition ratio from 0.8 to 1. Dynamic light scattering (DLS) experiments showed bimodal size distributions, the aggregates size increased with increasing the concentration of the polycarbonates aqueous solutions. The size of the aggregates acquired from TEM was smaller than that from DLS owing to the fact that TEM gave size of the aggregates in dry state rather than the hydrodynamic diameter. The degradation process revealed that the degradation rate of the aggregates could be accelerated with an increase in temperature. Moreover, the more the polycarbonate was hydrophilic, the faster was its degradation. Rheological measurements suggested that these multiblock polycarbonates were thermo‐responsive and by regulating the PEO/PPO composition ratio they could form a gel at 37°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
High molecular weight di- and triblock copolymers of poly(l-lactide), PLLA, (80 wt%) with a crystallizable flexible second component such as poly(ε-caprolactone), PCL, or poly(oxyethylene), PEO, (20 wt%) were obtained in nearly quantitative yields by ring opening of l-lactide initiated by PCL or PEO hydroxy terminated macromers. The copolymers were characterized by 1H NMR and FTIR spectroscopy and size exclusion chromatography and showed unimodal and narrow molecular weight distributions. X-ray diffraction measurements revealed high crystallinity (38-56%) of the PLLA blocks and gave no clear evidences of PCL or PEO crystallinity. DMTA and DSC techniques showed a melting behaviour of the copolymers (Tm=174-175 °C; ΔHm=19-37 J/g) quite similar to that of PLLA. PCL and PLLA segments are immiscible, while PLLA and PEO segments are partially miscible in the amorphous phase. Stress-strain measurements indicated a ductile behaviour of the copolymers, characterized by lower tensile moduli (225-961 Pa) and higher elongations at break (25-134%) with respect to PLLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号