首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过微波热解的方法,制备污泥-玉米秸秆和污泥-大豆秸秆吸附颗粒。研究不同吸附时间、pH值和Cd~(2+)初始浓度对废水中Cd~(2+)的吸附效果影响。结果表明,污泥-玉米秸秆对Cd~(2+)的吸附效果好于污泥-大豆秸秆颗粒。10℃和25℃条件下,两种吸附颗粒对Cd~(2+)的吸附率随着吸附时间的增加而增加,而35℃条件下,吸附时间为90min时,吸附率达到最大。当pH范围为2~7时,污泥-玉米秸秆和污泥-大豆秸秆对Cd~(2+)的吸附量分别为8.25mg·g~(-1)和2.33mg·g~(-1)。随着Cd~(2+)溶液初始浓度的增加,两种吸附颗粒对Cd~(2+)的吸附量呈现增加趋势。  相似文献   

2.
以好氧颗粒污泥的吸附作用和磷酸盐对重金属的螯合作用为基础,采用富含磷酸盐的生物除磷颗粒污泥作为吸附剂来处理含铅废水,考察了不同吸附条件(pH、Pb~(2+)的初始浓度、吸附反应时间)下,颗粒污泥对Pb~(2+)的去除效果。结果表明,除磷颗粒污泥在pH为4,初始Pb~(2+)浓度为150 mg·L~(-1)时,对铅的去除率最高(为99.9%);在吸附反应20 min时即可达到吸附平衡。生物除磷颗粒污泥对Pb~(2+)的吸附可以用Langmuir模型拟合(R~2=0.993),最大吸附量为49.5 mg·g~(-1)。其中离子交换和磷酸盐与Pb~(2+)的螯合作用对除磷颗粒污泥去除Pb~(2+)起到重要作用;傅里叶变换红外光谱(FTIR)测定表明—COOH、—OH、磷酰基等多种官能团也参与了除磷颗粒污泥除Pb~(2+)过程。  相似文献   

3.
利用废弃的花生壳作为吸附剂,对废水中常见的重金属离子Pb~(2+)进行吸附,采用单因素试验方法考察了吸附的最佳工艺条件、吸附动力学和吸附热力学特征。结果表明,在p H为4.5,Pb~(2+)初始浓度为50 mg/L,吸附温度为30℃,花生壳投加量为0.4 g/L,吸附时间为40 min时,花生壳对Pb~(2+)的吸附效果最好,其动力学行为更好的符合Lagergren准二级动力学模型。其吸附过程的ΔG0、ΔH0、ΔS0,表明该吸附过程为一个自发的吸热过程。  相似文献   

4.
采用机械掺杂法制备了聚苯胺/聚苯乙烯(PANI/PS)共混物,并用红外光谱表征了复合材料的目标结构。研究了pH、Pb~(2+)初始浓度以及吸附时间、温度对PANI/PS复合材料吸附Pb~(2+)的性能影响,并拟合了Pb~(2+)吸附过程的动力学模型和等温模型。结果表明:pH为4.5时,PANI/PS复合材料对Pb~(2+)的吸附容量最大,所需吸附平衡时间为50 min。PANI/PS复合材料对Pb~(2+)的吸附容量随着Pb~(2+)初始浓度的增大而增大,当Pb~(2+)浓度大于300 mg/L时,对Pb~(2+)的吸附容量变化速率放缓。PANI/PS复合材料对Pb~(2+)的吸附过程遵循Langmuir等温模型与准二级动力学方程,在15~50℃为自发吸附过程。  相似文献   

5.
从含重金属废渣堆积区的土壤中筛选分离出一种对重金属Pb~(2+)和Cd~(2+)具有高耐受性的功能菌株,采用包埋法制成固定化生物吸附剂,用于吸附废水中的重金属,考察了重金属的初始浓度、吸附时间、废水pH值及吸附剂添加量等因素对吸附性能的影响.结果表明,筛选出的菌株为短杆菌,对Pb~(2+)和Cd~(2+)的最大耐受浓度分别为2200和700 mg/L;吸附剂投加量为10 g/L、废水pH为6时,Pb~(2+)和Cd~(2+)达最大吸附率,分别为87.77%和57.50%;Pb~(2+)和Cd~(2+)基本可在40 min内被快速吸附达平衡,最大吸附量分别为114.3和82.12 mg/g;废水初始pH为5?7利于吸附;Pb~(2+)和Cd~(2+)初始浓度增加使吸附率降低,且Pb~(2+)初始浓度比Cd~(2+)初始浓度对吸附速率影响更大.Langmuir和Freundlich吸附方程拟合表明,Pb~(2+)和Cd~(2+)的吸附主要为单分子层表面吸附;Pseudo-second order动力学方程拟合表明,吸附过程的限速步骤主要为化学吸附,且Pb~(2+)比Cd~(2+)更易被吸附.  相似文献   

6.
坡缕石黏土进行简单提纯后,和海藻酸钠、纯水充分混合(物料比为坡缕石∶海藻酸钠∶水=100 g∶9 g∶77 m L),并在潮湿密闭环境下浸润24 h,制成粒径5 mm颗粒。(105±2)℃干燥后,焙烧2 h,制备颗粒状坡缕石吸附剂,采用XRD、BET进行表征,通过静态吸附实验探讨了pH值、Pb~(2+)初始浓度、反应时间和反应温度对吸附的影响,确立了颗粒化吸附剂对Pb~(2+)的吸附动力学和吸附等温线。结果表明,在颗粒化后,坡缕石黏土主要XRD衍射峰得以保留;600℃下烧结,使比表面积降低,而孔容积增大。随着pH值增大,坡缕石颗粒吸附剂对Pb~(2+)的吸附量增加;随着初始浓度的增加,颗粒吸附剂对Pb~(2+)的吸附去除率逐渐降低,平衡吸附量则逐渐上升。当pH值为5.0,Pb~(2+)初始浓度2 500 mg/L时,平衡吸附量达59.85 mg/g。吸附动力学符合颗粒内扩散模型。颗粒化坡缕石吸附剂对Pb~(2+)的吸附符合Langmuir吸附等温式,属于吸热反应。  相似文献   

7.
为研究以病死猪以炭化焚烧法制备的肉骨生物炭对水溶液中Pb~(2+)的吸附特性,分析了吸附时间、吸附剂用量、Pb~(2+)的初始含量等因素对吸附效果的影响。结果表明,对于50 mL质量浓度400 mg/L的Pb~(2+)溶液,当溶液初始pH为5.5、肉骨生物炭投加量为200 mg、吸附时间为240 min时,肉骨生物炭对Pb~(2+)的吸附效果达到最佳,吸附量为99.37 mg/g,Pb~(2+)去除率达到99%以上。肉骨生物炭对Pb~(2+)的动力吸附过程可以由准2级动力学模型很好地拟合;Langmuir方程描述的单分子层吸附模型能更好地拟合其等温吸附过程,饱和吸附量为106.4 mg/g。相比于玉米秸秆生物炭,肉骨生物炭对Pb~(2+)有更大的吸附容量和更快的吸附速率,是性能较好的Pb~(2+)吸附材料。  相似文献   

8.
以木薯淀粉为原料,微波辅助接枝丙烯酸合成了水凝胶(SAH)。采用SEM、FTIR、XPS对SAH进行了表征,考察了SAH对Pb~(2+)的吸附机理;进一步考察了微波功率、pH、吸附温度、吸附时间和Pb~(2+)的初始浓度对吸附的影响。结果表明,SAH具有三维多孔结构,主要通过与Pb~(2+)形成双配位络合物实现对Pb~(2+)的吸附。微波功率为300 W时制备的SAH,在pH为6.09、吸附时间为60 min、Pb~(2+)初始浓度为0.005 mol/L、吸附温度为30℃的条件下,吸附量可达561 mg/g。SAH可重复利用,重复使用4次后其吸附量为458 mg/g。吸附过程符合准二级动力学模型和Langmuir等温吸附模型。  相似文献   

9.
将硫酸钙作为添加剂与污泥共热解制备硫酸钙/污泥基生物炭(SBC),并使用BET、SEM、FTIR和XRD表征,研究了其对Pb~(2+)的吸附去除特性。结果表明,硫酸钙已负载在生物炭表面并对去除Pb~(2+)有促进作用。当温度为25℃,初始pH为5,SBC投加量为0.4 g/L,吸附时间为240 min时,Pb~(2+)去除率可达99.69%。Langmuir等温吸附模型能更好地描述SBC对Pb~(2+)的吸附过程,最大吸附量为280.899 mg/g;SBC对Pb~(2+)的吸附更符合准二级动力学模型,该吸附过程可能以化学吸附为主;热力学分析表明SBC对Pb~(2+)的吸附是自发的吸热过程,升温有利于吸附。  相似文献   

10.
利用活性污泥作为吸附剂,吸附废水溶液中重金属离子。研究了pH值、重金属离子初始浓度对活性污泥吸附效果的影响,以及吸附重金属离子前后废水pH值的变化情况,同时探讨了pH值、 Cu~(2+)和Cd~(2+)初始浓度对活性污泥中可溶性有机物产生量的影响。结果表明,活性污泥对重金属离子具有良好的吸附效果,活性污泥对Pb~(2+)、 Cd~(2+)、 Cu~(2+)、 Zn~(2+)、 Ni~(2+)的最佳吸附pH值在7~9之间。随着初始浓度的增大,活性污泥对Zn~(2+)、 Ni~(2+)的吸附率降低,对Cd~(2+)的吸附率升高,对Cu~(2+)的吸附率先升高后降低,对Pb~(2+)的吸附率无显著影响。活性污泥吸附重金属离子后溶液的pH值均向中性区域变化。溶解性有机物的产生量随着pH值的增大呈先降低后缓慢升高的趋势。在相同的pH值下溶解性有机物的产生量随着重金属离子浓度的增大而增大。  相似文献   

11.
以氧化石墨烯(GO)、FeCl_3·6H_2O及聚(4-苯乙烯磺酸-共聚-马来酸)钠盐(PSSMA)为主要原料,通过简便一步溶剂热法制备了阴离子聚电解质修饰磁性氧化石墨烯(MGO@PSSMA),并将其用于水溶液中重金属Pb~(2+)、Cu~(2+)的吸附去除。采用FTIR、SEM、TEM、VSM和DLS对制备的MGO@PSSMA进行了表征。考察了溶液pH、吸附时间、溶液初始质量浓度对Pb~(2+)、Cu~(2+)在MGO@PSSMA及未经PSSMA修饰磁性氧化石墨烯(MGO)上吸附的影响。探讨了吸附等温过程、吸附动力学及吸附作用机理。结果表明:MGO表面引入PSSMA可有效增加其对Pb~(2+)、Cu~(2+)的吸附量。在pH=5,溶液初始质量浓度为300 mg/L时,MGO@PSSMA对Pb~(2+)和Cu~(2+)的实际吸附量达141.1和104.8 mg/g。当溶液初始质量浓度为150 mg/L时,MGO@PSSMA对Pb~(2+)和Cu~(2+)的吸附平衡时间分别为2和1.5 min。MGO@PSSMA对Pb~(2+)、Cu~(2+)的吸附动力学及吸附等温数据分别符合准二级吸附动力学模型和Langmuir吸附等温模型。使用乙二胺四乙酸(EDTA)和HCl可实现MGO@PSSMA的有效再生;通过外加磁场作用可实现MGO@PSSMA的回收再利用。  相似文献   

12.
本研究采用城市生活污泥为原料,污泥活化后低温炭化所得的生物炭用作吸附剂去除水溶液中的Pb~(2+)、Cu~(2+)、Cd~(2+)、Cr~(6+)重金属离子。并对所得生物炭进行了表征,研究了溶液pH值、初始浓度、吸附时间对生物炭吸附能力的影响,并对吸附机理进行了分析。实验结果表明:所得生物炭对Pb~(2+)、Cu~(2+)、Cd~(2+)、Cr~(6+)的最大吸附值分别为250 mg/g、93.5 mg/g、44.4 mg/g、142 mg/g。生物炭对Pb~(2+)、Cu~(2+)、Cd~(2+)、Cr~(6+)的等温吸附曲线符合Langmuir方程,吸附动力学过程可以用伪二阶模型来描述。  相似文献   

13.
研究磁性水热炭对Pb~(2+)的吸附,采用原子吸收光谱仪测定Pb~(2+)的浓度,控制单因素变量法研究了投加量、pH、时间和初始离子浓度等对Pb~(2+)的吸附研究。结果表明,在初始离子浓度50 mg/L,投加量为0.05 g、pH 5.0,温度30℃以及吸附时间2 h时,吸附去除率达到93.88%,吸附量为46.94 mg/g。用准二级动力学方程模拟实验数据,相关系数可达到0.999 9,吸附过程可用Langmuir吸附等温模型来描述,说明磁性水热炭对Pb~(2+)的吸附过程为单分子层的化学吸附。  相似文献   

14.
利用废弃的花生壳作为吸附剂,对废水中的Cu~(2+)进行吸附,采用正交实验方法考察了吸附的最佳条件、吸附动力学和吸附热力学特征。结果表明,在pH为4.5,Cu~(2+)初始浓度为100 mg/L,吸附温度为40℃,花生壳投加量为0.2 g/L,吸附时间为40 min时,花生壳对Cu~(2+)的吸附效果最好;其吸附过程的ΔG0,ΔH0,ΔS0。表明该吸附过程为一个自发的吸热过程。  相似文献   

15.
采用FT-IR、SEM对PP-g-GMA-DETA螯合纤维进行表征,并探究纤维对Pb~(2+)的吸附特性及吸附机理。结果表明,PP-g-GMA-DETA螯合纤维对Pb~(2+)的饱和吸附量为52.03 mg/g;在pH为2~5时吸附量随着pH的升高而增大,且随Pb~(2+)初始浓度的增加而增大,并在Na~+、Mg~(2+)、Ca~(2+)、Fe~(3+)存在的竞争吸附过程中表现出选择性;吸附过程符合准二级动力学模型,主要受化学作用控制,半饱和吸附时间为13 min;吸附等温线符合Langmuir吸附等温线模型,为单分子层吸附,纤维可再生重复使用。  相似文献   

16.
采用盐酸浸泡和热处理的方法对香菇菌渣改性后制备吸附剂,研究其对模拟废水中Pb~(2+)的吸附性能,考察了初始浓度、温度、pH、吸附剂投加量和吸附时间5个因素对吸附性能的影响,并研究了改性菌渣吸附剂对Pb~(2+)的等温吸附和吸附动力学特征。结果表明:改性菌渣对Pb~(2+)模拟溶液的最佳吸附条件为:pH=5.0、吸附剂投加量1.6 g/L、初始浓度250 mg/L、温度25℃、吸附时间60min。在该条件下对Pb~(2+)的吸附率可达95.68%,改性菌渣吸附Pb~(2+)的过程符合Langmuir等温模型和准二级吸附动力学模型,吸附速率主要由化学吸附控制。  相似文献   

17.
采用改进的Hummers制备氧化石墨烯,对其进行功能化改性,制得功能化氧化石墨烯f-GO,再将功能化氧化石墨烯和纤维素共混,制备了具有较强吸附性能的功能化氧化石墨烯/纤维素复合材料(f-GO/CE)。以复合材料为载体,用静态法考察了pH值、吸附时间、初始浓度等因素对f-GO/CE吸附Pb~(2+)效果的影响。结果表明,吸附最适pH为6,吸附时间是150 min,最佳初始浓度为240 mg/L;同时f-GO/CE对Pb~(2+)的吸附行为符合Langmiur方程,吸附最大量可达到105mg/g,其对铅离子具有优异的吸附性能。  相似文献   

18.
在N,N-二甲基甲酰胺中,以次磷酸钠为催化剂,采用柠檬酸对氢氧化钠处理过的玉米芯进行化学改性,制备得到生物吸附剂,并研究其对Pb~(2+)的吸附性能。通过探讨投加量、吸附时间、Pb~(2+)溶液的不同吸附温度、pH等因素研究改性玉米芯对废水Pb~(2+)吸附性能的影响。结果表明,改性的玉米芯投加质量为0.5 g、pH为7、Pb~(2+)初始质量浓度为100 mg/L时,吸附性能较好,吸附平衡时间t为120 min,最大吸附率为88.10%、最大吸附量为35.24 mg/g。可以用准二级动力学方程和Langmuir方程描述改性玉米芯的吸附过程。  相似文献   

19.
利用禽类羽毛纤维作为吸附剂,吸附溶液中的重金属离子Cu~(2+)、Zn~(2+)、Ni~(2+)、Pb~(2+)、Cr~(6+)。考察温度、pH值、吸附剂投加量、重金属离子初始浓度等对羽毛纤维吸附效果的影响并建立吸附等温线。结果表明,羽毛纤维能吸附重金属离子,随着温度、吸附剂投加量的增大,重金属离子初始浓度的降低,羽毛纤维对重金属离子的吸附率逐渐提高。随着pH值的升高,羽毛纤维对Cu~(2+)、Zn~(2+)、Ni~(2+)、Pb~(2+)的吸附率提高,对Cr~(6+)的吸附率降低。羽毛纤维对Cu~(2+)、Zn~(2+)、Ni~(2+)、Pb~(2+)吸附符合Freundlich吸附等温模型。羽毛纤维对重金属离子的吸附能力顺序为Pb~(2+)>Cu~(2+)>Zn~(2+)>Ni~(2+)>Cr~(6+)。  相似文献   

20.
采用高锰酸钾氧化改性稻壳,制备新型的改性吸附剂,研究其对Pb~(2+)的吸附性能。结果表明:吸附Pb~(2+)的最适p H值为4~6;初始Pb~(2+)浓度在50 mg/L以下时,饱和吸附量随Pb~(2+)浓度提高而提高,最高达到28.85 mg/g。吸附等温线和动力学方程拟合分析表明锰改性稻壳对Pb~(2+)的吸附属于单层吸附,吸附过程主要受限于孔隙扩散。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号