首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
聚苯乙烯和聚丙烯酸丁酯无皂核壳乳液聚合反应的研究   总被引:2,自引:0,他引:2  
聚苯乙烯 (PS)和聚丙烯酸丁酯 (PBA)复合乳液是无皂乳液聚合反应生成的 ,采用丙烯酸丁酯加到聚苯乙烯种子微粒中反应得到的。PS/PBA复合微粒的结构通过红外光谱图明显的吸收峰特征而得到证实。纯PS微粒和低BA含量的PS/PBA微粒几乎是球形和规则的 ,而随着BA单体含量的增加 ,PS/PBA复合微粒的粒子尺寸变大和呈现类似高尔夫球形状。同时 ,本文进一步研究了PS/PBA复合微粒的表面形态学  相似文献   

2.
Poly(butyl acrylate)/poly(methyl methacrylate) (PBA/PMMA) core–shell particles embedded with nanometer‐sized silica particles were prepared by emulsion polymerization of butyl acrylate (BA) in the presence of silica particles preabsorbed with 2,2′‐azobis(2‐amidinopropane)dihydrochloride (AIBA) initiator and subsequent MMA emulsion polymerization in the presence of PBA/silica composite particles. The morphologies of the resulting PBA/silica and PBA/silica/PMMA composite particles were characterized, which showed that AIBA could be absorbed effectively onto silica particles when the pH of the dispersion medium was greater than the isoelectric potential point of silica. The critical amount of AIBA added to have stable dispersion of silica particles increased as the pH of the dispersion medium increased. PBA/silica composite particles prepared by in situ emulsion polymerization using silica preabsorbed with AIBA showed higher silica absorption efficiency than did the PBA/silica composite particles prepared by direct mixing of PBA latex and silica dispersion or by emulsion polymerization in which AIBA was added after the mixing of BA and silica. The PBA/silica composite particles exhibited a raspberrylike morphology, with silica particles “adhered” to the surfaces of the PBA particles, whereas the PBA/silica/PMMA composite latex particles exhibited a sandwich morphology, with silica particles mainly at the interface between the PBA core and the PMMA shell. Subsequently, the PBA/silica/PMMA composite latex obtained had a narrow particle size distribution and good dispersion stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3425–3432, 2006  相似文献   

3.
Ultrasonically initiated emulsion polymerization of n‐butyl acrylate (BA) without added initiator has been studied. The experimental results show that high conversion of BA can be reached in a short time by employing an ultrasonic irradiation technique with a high purge rate of N2. The viscosity average molecular weight of poly(n‐butyl acrylate) (PBA) obtained reaches 5.24 × 106 g mol?1. The ultrasonically initiated emulsion polymerization is dynamic and complicated, with polymerization of monomer and degradation of polymer occurring simultaneously. An increase in ultrasound intensity leads to an increase in polymerization rate in the range of cavitation threshold and cavitation peak values. Lower monomer concentration favours enhancement of the polymerization rate. 1H NMR, 13C NMR and FTIR spectroscopies reveal that there are some branches and slight crosslinking, and also carboxyl groups in PBA. Ultrasonically initiated emulsion polymerization offers a new route for the preparation of nanosized latex particles; the particle size of PBA prepared is around 50–200 nm as measured by transmission electron microscopy. © 2001 Society of Chemical Industry  相似文献   

4.
In this work, butyl acrylate and styrene were used as monomers in the first stage and second stage of polymerization, respectively, and potassium persulfate (K2S2O8) was used as the initiator to synthesize the poly(butyl acrylate)–polystyrene (PBA/PS) composite latex by the method of two-stage soapless emulsion polymerization. The morphology of the latex particles was observed by transmission electron microscopy (TEM), which showed that the composite latex particles had a core–shell structure. The particle-size distribution of the composite latex was very uniform. A thin layer of a PBA-graft-PS copolymer was formed in between the core (PBA) and shell (PS) regions, which thus increased the compatibility between the PBA and PS phases. The process of heating and pressuring influenced the morphology, mechanical properties, and thermal properties of the PBA/PS composite polymer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 13–23, 1998  相似文献   

5.
Heterogeneous latexes were prepared by a semicontinuous seeded emulsion polymerization process under monomer starved conditions at 80 °C using potassium persulfate as the initiator and sodium dodecyl sulfate as the emulsifier. Poly(butyl acrylate) latexes were used as seeds. The second‐stage polymer was poly(styrene‐co‐methyl methacrylate). By varying the amounts of methyl methacrylate (MMA) in the second‐stage copolymer, the polarity of the copolymer phase could be controlled. Phase separation towards the thermodynamic equilibrium morphology was accelerated either by ageing the composite latex at 80 °C or by adding a chain‐transfer agent during polymerization. The morphologies of the latex particles were examined by transmission electron microscopy (TEM). The morphology distributions of latex particles were described by a statistical method. It was found that the latex particles displayed different equilibrium morphologies depending on the composition of the second‐stage copolymers. This series of equilibrium morphologies of [poly(butyl acrylate)/poly(styrene‐co‐methyl methacrylate)] (PBA/P(St‐co‐MMA)) system provides experimental verification for quantitative simulation. Under limiting conditions, the equilibrium morphologies of PBA/P(St‐co‐MMA) were predicted according to the minimum surface free energy change principle. The particle morphology observed by TEM was in good agreement with the predictions of the thermodynamic model. Therefore, the morphology theory for homopolymer/homopolymer composite systems was extended to homopolymer/copolymer systems. © 2002 Society of Chemical Industry  相似文献   

6.
The mechanical and thermal properties of films from a series of two-stage emulsion polymers were investigated. The emulsion polymers were made by polymerizng styrene in the presence of a preformed poly(butyl acrylate-co-divinyl benzene) seed latex. The effects of seed particle size, seed particle crosslinking via the amount of divinyl benzene, styrene/butyl acrylate ratio, and thermal history on the film properties were studied. Latex particles were characterized by light scattering and film formation behavior. Dried films were characterized by differential scanning calorimetry, dynamic mechanical analysis, and stress-strain behavior. Although evidence was obtained for nearly complete phase separation between the polystyrene (PS) and poly(butyl acrylate) (PBA) phases, the site of styrene polymerization and thus the PS phase morphology is influenced by seed particle size, seed crosslinking, and S/BA ratio. The morphology of as-dried films consists of finely dispersed PS domains in a continuous PBA matrix. Thermal annealing above the PS Tg causes coalescence of the PS domains, resulting in significantly improved mechanical properties. The extent of PS phase coalescence is also influenced by the level of seed crosslinking.  相似文献   

7.
Graft copolymers with poly(n-butyl acrylate) (PBA) backbones and poly(methyl methacrylate) (PMMA) macromonomer side chains are used as compatibilizing agents for PBA/PMMA composite latexes. The composite latexes are prepared by seeded emulsion polymerization of methyl methacrylate (MMA) in the presence of PBA particles. Graft copolymers were already incorporated into the PBA particles prior to using these particles as seed via miniemulsion (co)polymerization of n-butyl acrylate (BA) in the presence of the macromonomers. Comparison between size averages of composite and seed particles indicates no secondary nucleation of MMA during seeded emulsion polymerization. Transmission electron microscopy (TEM) observations of composite particles show the dependence of particle morphologies with the amount of macromonomer (i.e., mole ratio of macromonomer to BA and molecular weight of macromonomer) in seed latex. The more uniform coverage with the higher amount of macromonomer suggests that graft copolymers decrease the interfacial tension between core and shell layers in the composite particles. Dynamic mechanical analysis of composite latex films indicates the existence of an interphase region between PBA and PMMA. The dynamic mechanical properties of these films are related to the morphology of the composite particles, the arrangement of phases in the films, and the volume of the interphase polymer. © 1997 John Wiley & Sons, Inc.  相似文献   

8.
Pressure‐sensitive adhesives (PSAs) are viscoelastic–elastomeric materials that can adhere strongly to solid surfaces with light contact pressure and a short contact time. Polyacrylates produced by solution polymerization are used widely because of their good adhesive properties. A novel emulsion polymerization was established to improve the low physical properties of PSA on the basis of conventional poly(n‐butyl acrylate) (PBA) by emulsion polymerization. PBA latex was synthesized by the emulsion polymerization of 50 wt % n‐butyl acrylate mixed with 15 wt % ethyl acetate (EA) with Emal‐10P and Emulgen‐920 as anionic and nonionic surfactants, respectively, at 70°C. Potassium persulfate (KPS) or a combination of KPS and dicumyl peroxide (DCP) was used as the initiator. The KPS/DCP system gave a very high‐molecular‐weight PBA of a narrow molecular weight distribution with a weight‐average molecular weight/number‐average molecular weight value of 1.01–1.03 in 15 min. The PSA tape was prepared by the casting of the PSA latex onto a corona poly(ethylene terephthalate) film as an adherent to obtain a 50‐μm‐dry‐thickness film. The PSA tape produced from PBA by the novel emulsion polymerization showed better adhesive properties, such as 180° peel adhesion, shear holding power, and rolling ball tack tests according to JIS and ASTM standards, than PSA tape produced from solution polymerization. The occlusion of a small amount of EA in emulsion particles before polymerization was found to give higher properties than those of PBA prepared by the addition of EA to the PBA latex after polymerization. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:413–421, 2006  相似文献   

9.
Seeded preswelling emulsion polymerization was carried out by using monodispersed poly(4‐vinylpyridine‐co‐butyl acrylate) [P(4VP‐BA)] particles as the seed, and styrene and butyl acrylate as the second‐stage monomers under different polymerization conditions, to obtain hemispherical polystyrene (PST)‐rich–P4VP‐rich microspheres. Prior to polymerization, toluene was added into the preswelling system together with the second‐stage monomers. It was found that, with the increase of the amount of toluene, the particle morphology showed a tendency toward desirable hemispherical structure, and the colloidal stability of composite latex was improved. When the weight ratio of toluene/seed latex was increased up to 7.5/40 (g/g), the stable hemispherical latex could be obtained. However, when toluene was not added, the coagulum formed on the wall of the reactor during polymerization, and the composite particles with multiple surface domains (such as sandwich‐like, popcorn‐like) were formed. In addition, the final morphology of composite particles was influenced by the polarity of the seed crosslinker and the hydrophilicity of the second‐stage initiator, which could affect the mobility of poly(styrene‐co‐butyl acrylate) [P(ST‐BA)] chains. The morphology development during the polymerization was investigated in detail, and a schematic model was derived to depict the formation mechanism of hemispherical P(4VP‐BA)/P(ST‐BA) composite microspheres. The results revealed that the mobility of the P(ST‐BA) chains influenced the diffusion of the P(ST‐BA) domains on the surface of the P(4VP‐BA) matrix. When the mobility of the P(ST‐BA) chains allowed small‐size P(ST‐BA) domains to coalesce into one larger domain, complete phase‐separated morphology (hemisphere) could be achieved. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3811–3821, 2003  相似文献   

10.
The morphology of particles (I) produced by seeded emulsion copolymerization of styrene (S) and sodium p-styrene sulfonate (NaSS) with butyl acrylate (BA)-methacryloyloxyethyl-trimethylammonium chloride (QDM) copolymer particles as seed was examined in comparison with poly(butyl acrylate) (PBA)-polystyrene (PS) composite polymer emulsion particles (II). In an electron microscopic observation, it was observed that II particles had an anomalous shape and the electron densities at different points in the particle were heterogeneous, whereas I particles had an almost spherical shape and the electron densities were homogeneous. The maximum tensile strength and toughnes were much larger in II than I. The dynamic mechanical studies indicate that II film had a macroheterogeneous structure consisting of PS-rich and PBA-rich phases, whereas I film had a microheterogeneous structure. These ressults suggest that there is an effect of intermolecular interaction between polymers of different kinds on the formation of heterogeneous structure in particles consisting of two kinds of polymers.  相似文献   

11.
The design of a semicontinuous emulsion polymerization process, primarily based on theoretical calculations, has been carried out with the objective of achieving overall independent control over the latex particle size, the monodispersity in the particle size distribution, the homogeneous copolymer composition, the concentration of functional groups (e.g., carboxyl groups), and the glass‐transition temperature with n‐butyl methacrylate/n‐butyl acrylate/methacrylic acid as a model system. The surfactant coverage on the latex particles is very important for maintaining a constant particle number throughout the feed process, and this results in the formation of monodisperse latex particles. A model has been set up to calculate the surfactant coverage from the monomer feed rate, surfactant feed rate, desired solid content, and particle size. This model also leads to an equation correlating the polymerization rate to the instantaneous conversion of the monomer or comonomer mixture. This equation can be used to determine the maximum polymerization rate, only below or at which monomer‐starved conditions can be achieved. The maximum polymerization rate provides guidance for selecting the monomer feed rate in the semicontinuous emulsion polymerization process. The glass‐transition temperature of the resulting carboxylated poly(n‐butyl methacrylate‐con‐butyl acrylate) copolymer can be adjusted through variations in the compositions of the copolymers with the linear Pochan equation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 30–41, 2003  相似文献   

12.
A novel core–shell modifier (MOD) made up of polystyrene and poly(butyl acrylate) (PBA) grafted on a crosslinked styrene‐co‐butadiene core was synthesized by emulsion polymerization. This modifier was used for enhancing effectively the impact ductility of poly(vinyl chloride) (PVC) without losing its transparency. The effects of the MOD on the properties of PVC/MOD blends were explored. It was found that the butyl acrylate (BA) content of the MOD was an important factor affecting the properties of PVC/MOD blends. The Izod impact strength of these blends reached 1200 J m?1 when the MOD contained 40 wt% BA. The dispersion morphology of the MOD in the PVC matrix was investigated using transmission electron microscopy, with a uniform dispersion of the MOD with higher BA content being obtained. The toughening mechanism of PVC/MOD blends was also investigated. The presence of BA in the MOD enhanced the ductility of the PVC blends due to the increased amount of soft phase (PBA). The dispersion morphology indicated that the interfacial interaction between MOD particles and PVC matrix was improved due to the presence of PBA graft chain in the MOD. TEM of impact fracture samples showed that shear yielding of the PVC matrix and debonding of MOD particles were the major toughening mechanisms for the PVC/MOD blends. Copyright © 2010 Society of Chemical Industry  相似文献   

13.
The radical-induced grafting of n-butyl acrylate (BA) onto poly(butadiene-co-styrene) [(P(Bd-S)] latexes during seeded emulsion polymerization was studied. This P(Bd-S)/PBA rubber/rubber core/shell latex system exhibited unique grafting behavior as compared to other extensively studied rubber/glass core/shell latex systems, such as poly(butadiene-co-styrene)/poly(methyl methacrylate) [P(Bd-S)/PMMA], poly(butadiene-co-styrene)/polystyrene [P(Bd-S)/PS] and poly(butadiene-co-styrene)/poly(acrylonitrile)[P(Bd-S)/PAN]. These composite latexes were characterized by the formation of a highly grafted/crosslinked P(Bd-S)/PBA interphase zone generated during the seeded emulsion polymerization process. Although both of the individual core and shell polymers studied were “soft” themselves, the resulting P(Bd-S)/PBA composite latex particles were found to be rather “hard.” The formation of the interphase zone was studied by using techniques such as solvent extraction, differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:511–523, 1997  相似文献   

14.
St-BA-BVP无皂共聚物阳离子乳胶粒大小及形态研究   总被引:1,自引:0,他引:1  
合成阳离子共单体 1-丁基 ,4 -乙烯吡啶溴化铵 ( BVP) ,并以偶氮二异丁基咪盐酸 ( A IBA)作引发剂 ,制备苯乙烯 /丙烯酸丁酯 ( St/ BA )共聚物乳液 ,通过 TEM研究改变 BVP的浓度、St/ BA主单体的配比及单体加料方式对 P( St/ BA / BV P)乳胶粒大小形态的影响 ,结果表明批量法和单体全滴加法制备的乳胶粒形状规则、分布均匀、半连续法制备的乳胶粒子呈多分散分布 ,粒径相差很大 ,且 P( St) / P( BA)得到的乳胶粒呈明显的核壳结构。  相似文献   

15.
Ab initio reversible addition–fragmentation chain transfer (RAFT) emulsion polymerization of styrene/butyl acrylate was investigated with the trithiocarbonate macro‐RAFT agent poly(acrylic acid)‐block‐polystyrene (PAA‐b‐PS) as a stabilizer and a RAFT agent. Influences of the amount of ammonium persulfate (APS), the amount of PAA‐b‐PS and the mass ratio of monomers on emulsion polymerization and film properties are discussed. The particle morphology exhibited spherical‐like structure with particles of about 90 nm in diameter and relatively narrow particle size distribution characterized using transmission electron microscopy and dynamic laser scattering. Fourier transform infrared and 1H NMR spectra showed that the styrene/butyl acrylate emulsion was successfully synthesized. The monomer conversion increased initially with increasing amount of APS, from 0.4 up to 0.8 wt%, and then decreased. The particle size increased and its distribution decreased gradually with increasing amount of APS. The monomer conversion increased from 76.83 to 94.21% as the amount of PAA‐b‐PS increased from 3 to 4 wt%, and then decreased with further increase of PAA‐b‐PS. The particle size decreased and its distribution increased with increasing amount of PAA‐b‐PS. The water resistance and solvent resistance of the polymer films initially increased and then decreased with decreasing mass ratio of butyl acrylate to styrene. © 2014 Society of Chemical Industry  相似文献   

16.
Different organic–inorganic composite particles [montmorillonite/poly(butyl acrylate) (PBA)/poly(methyl methacrylate) (PMMA), SiO2/PBA/PMMA, and CaCO3/PBA/PMMA] were synthesized by emulsion polymerization. Furthermore, polycarbonate (PC) alloys were prepared via the doping of these composite particles into PC with a twin‐screw extruder. The structure, mechanical properties, and flammability of the PC alloys were studied in detail. Although the tensile modulus of PC decreased a little, the flexibility and impact resistance were improved by the addition of these composite particles. This result was attributed to the fact that the composite particles were well dispersed in the PC matrix, with a cocontinuous phase formed between the particles and PC. In addition, the combustion behavior of the PC alloys, compared with that of the pure PC, resulted from a ceramic‐like char that formed on the surface of the PC alloys during burning. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
Polystyrene‐acrylate resin coated polyethylene (PE) wax composite particles used for color toner were prepared by in situ emulsion polymerization. The laser particle analyzer and transmission electron microscope (TEM) were applied to show the size and morphology of composite particles, and thermogravimetric analysis (TGA) was used to characterize the thermal properties of the nanoparticles. With the increase of emulsifier triton x‐100 (TX‐100), the size of composite particles decreased at first and then increased and the shell thickness increased gradually. When the mass ratio of TX‐100 to monomers was 1:10, the core–shell structure of the latex particles was the clearest. The homopolymer of styrene (St) and copolymer of styrene‐butyl acrylate (St‐BA) showed few differences on the size of the composite particles, but a significant difference on the thermal performance. The FTIR spectra and dissolution experiments of PE wax/P(St‐BA) composite particles provided supporting evidence for encapsulation. With the increasing percentage of polyethylene wax, the particles size got larger and emulsion shelf stability became worse. The size and the shelf stability got optimized when the reaction temperature was 80 °C. The average size of the particles initiated by 2,2‐azobisisobutyronitrile (AIBN) was smaller and the size distribution was narrower than those of initiated by potassium persulfate (KPS). © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44399.  相似文献   

18.
Core–shell structured particles, which comprise the rubbery core and glassy layers, were prepared by emulsifier‐free emulsion polymerization of poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(n‐BA/MMA)/PS]. The particle diameter was about 0.22 μm, and the rubbery core was uncrosslinked and lightly crosslinked, respectively. The smaller core–shell structured particle–toughened PS blends were investigated in detail. The dynamic mechanical behavior and observation by scanning electron microscopy of the modified blend system with core–shell structured particles indicated good compatibility between PS and the particles, which is the necessary qualification for an effective toughening modifier. Notched‐impact strength and related mechanical properties were measured for further evaluation of the toughening efficiency. The notched‐impact strength of the toughened PS blends with uncrosslinked particles reached almost sixfold higher than that of the untoughened PS when 15 phr of the core–shell structured particles was added. For the crosslinked particles the toughening effect for PS was not obvious. The toughening mechanism for these smaller particles also is discussed in this article. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1290–1297, 2003  相似文献   

19.
采用种子乳液聚合法制备了聚丙烯酸丁酯(PBA)乳液,然后通过第二单体甲基丙烯酸甲酯的预溶胀法聚合制备了PBA/聚甲基丙烯酸甲酯(PMMA)乳液,用激光散射粒度仪和透射电子显微镜对乳液粒径和结构进行了表征.结果表明,当乳化剂十二烷基硫酸钠质量分数为丙烯酸丁酯的1.5%时,可制备粒径为53.6 nm且分布窄的PBA种子乳液;通过调整补加乳化剂、单体与种子乳液的用量,可制得粒径为53.6~443.8 nm的一系列单分散PBA乳液;PBA/PMMA乳液具有完善的核壳结构,且在核壳两相间存在着一个过渡层.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号