首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymerization of propylene was carried out by using a MgCl2–EtOH–TiCl4–ID–TEA–ED catalyst system in n‐heptane, where ID (internal donor) was an organic diester, ED (external donor) was a silane compound, and TEA (triethyl aluminum) was the activator. The influences of temperature, pressure, time, hydrogen, and the molar ratios of Al/Ti and ED/Ti on polymer isotacticity and catalyst activity were studied by solubility in boiling n‐heptane and measuring the polymer produced, respectively. The morphology of the polymers was evaluated through scanning electron microscopy and particle size distribution. The rheological properties of the poly(propylene) were determined by the melt flow index. It was found that the catalyst showed good morphology and high activity and also the produced polymers were characterized by high isotacticity and globulelike shapes. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1744–1749, 2005  相似文献   

2.
The slurry prepolymerization of ethylene using TiCl4/MgCl2 as a catalyst was investigated. A 23‐factorial experimental design method was employed to study the effects of the temperature, hydrogen, and active cocatalyst‐to‐catalyst molar ratio (Al/Ti) on the catalyst activity, prepolymer melt flow index, and powder bulk density. All dependent variables increased when the active Al/Ti ratio increased from 1 to 2. The hydrogen–Al/Ti interaction had a significant effect on the prepolymer melt flow index and catalyst activity. The hydrogen (partial pressure ranging from 0.5 to 1.5 bar) and temperature (ranging from 60 to 80°C) variables as well as the hydrogen–temperature and hydrogen–temperature–Al/Ti interactions increased the prepolymer powder bulk density, which ranged from 0.11 to 0.373 g/cc. To find the reason for the prepolymer powder bulk density variation with the operating conditions, the particle size distribution and crystallinity of the prepolymers were determined. The increasing catalyst activity, ranging from 132 to 660 g of polyethylene/mmol of Ti, enhanced the weight percentage of fines, which ranged from 3 to 60, and decreased the average particle size, which ranged from 562 to 120 μm. This was the reason for the increasing prepolymer powder bulk density and could be due to the breakup of the prepolymer particles during prepolymerization. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

3.
Four cocatalysts, referred to as ethylaluminoxanes, were synthesized by the reaction between triethylaluminium (AIEt3) and water under various molar ratios of H2O/Al at ?78°C. Aluminoxanes were used as cocatalysts for a MgCl2‐supported Ziegler–Natta catalyst for propylene polymerization at temperatures ranging from 70 to 100°C. When the polymerization was activated by AlEt3, the activity as well as the molecular weight and isotacticity of the resulting polymer gradually dropped as the temperature varied from 70 to 100°C. When ethylaluminoxane was employed as the cocatalyst, good activity and high molecular weight and isotacticity were obtained at 100°C. Furthermore, when the cocatalyst varied from AlEt3 to ethylaluminoxane, the atactic fraction and polymer fraction with moderate isotacticity decreased and the high isotactic fraction slightly increased, which indicated that the variation of the cocatalyst significantly affects the isospecificity of active sites. It was suggested that the reactivity of the Al‐Et group and the size of the cocatalyst were correlated to the performance of the Ziegler–Natta catalyst at different temperatures. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1978–1982, 2006  相似文献   

4.
BACKGROUND: Kinetic and morphological aspects of slurry propylene polymerization using a MgCl2‐supported Ziegler–Natta catalyst synthesized from a Mg(OEt)2 precursor are investigated in comparison with a ball‐milled Ziegler–Natta catalyst. RESULTS: The two types of catalyst show completely different polymerization profiles: mild activation and long‐standing activity with good replication of the catalyst particles for the Mg(OEt)2‐based catalyst, and rapid activation and deactivation with severe fragmentation of the catalyst particles for the ball‐milled catalyst. The observed differences are discussed in relation to spatial distribution of TiCl4 on the outermost part and inside of the catalyst particles. CONCLUSION: The Mg(OEt)2‐based Ziegler–Natta catalyst is believed to show highly stable polymerization activity and good replication because of the uniform titanium distribution all over the catalyst particles. Copyright © 2008 Society of Chemical Industry  相似文献   

5.
The initial state polymerization of propylene with Ziegler–Natta catalysts has been investigated and discussed at very low polymerization yields under adiabatic industrial prepolymerization conditions in diluted slurry regarding the effects of significant process parameters like monomer pressure, aluminum alkyl, and donor kind and concentration including the morphology of the catalyst/polymer particles formed. A sharp temperature increase in the first minutes of the initial state polymerization is followed by a temperature maximum and a slow decrease. With cocatalyst triethyl aluminum (TEAL), high prepolymerization yields were already achieved at a molar ratio TEAL/Ti of 3.0, remaining about constant until ratios of at least 300. The external donor dicyclopentyl dimethoxy silane leads to higher polymerization yields than the donor cyclohexyl dimethoxymethyl silane in the initial state polymerization too; however, both show a remarkable decreasing effect on polymerization yield above a specific molar ratio donor/Ti obviously correlated with the bulkiness of the alkyl groups. The particle size of the catalyst and the catalyst/prepolymer particles is increasing with polymerization yield until about 22 g PP/g Cat with particles almost perfectly spherical. The particle size distribution is rather broad at lower prepolymerization stages but unifying with lower polymerization rates at higher polymerization times. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
Spherical MgCl2‐supported Ziegler–Natta catalysts containing internal donors, such as diethyl phthalate, diisobutyl phthalate, and di‐n‐octyl phthalate, have been prepared. The effects of external donors, phenyltrimethoxysilane, phenyltriethoxysilane, and diphenyldimethoxylsilane, on the propylene polymerization catalyzed by these catalysts were studied. The results indicate that the external donors not only led to an increase in the isotactic index, but also affected the morphology of resultant polymer particles. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 738–742, 2005  相似文献   

7.
Ultra‐high‐molecular‐weight polyethylene (PE) with viscosity‐average molecular weight (Mv) of 3.1 × 106 to 5.2 × 106 was prepared with a heterogeneous Ziegler–Natta MgCl2 (ethoxide type)/TiCl4/triethylaluminum catalyst system under controlled conditions. The optimum activity of the catalyst was obtained at a [Al]/[Ti] molar ratio of 61 : 1 and a polymerization temperature of 60°C, whereas the activity of the catalyst increased with monomer pressure and decreased with hydrogen concentration. The titanium content of the catalyst was 2.4 wt %. The rate/time profile of the catalyst was a decay type with a short acceleration period. Mv of the PE obtained decreased with increasing hydrogen concentration and polymerization temperature. The effect of stirrer speeds from 100 to 400 rpm did not so much affect the catalyst activity; however, dramatic effects were observed on the morphology of the polymer particles obtained. A stirrer speed of 200 rpm produced PE with a uniform globulelike morphological growth on the polymer particles. The particle size distributions of the polymer samples were determined and were between 14 and 67 μm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
This article demonstrates the influence of the molar ratio between diether as internal donor and Magnesium dichloride in processing of the catalyst preparation on the catalytic performance for propylene polymerization with MgCl2‐supported Ziegler–Natta catalyst. The effect of electron donor on catalyst is investigated. The experimental data find that diether content on catalyst increases and Ti content on catalyst decreases with the increase of diether/Mg molar ratio. This result indicates that diether as internal donor is not coordinated to Ti species but to Mg species on catalyst. The introduction of diether remarkably improves the catalytic activity. The extents of improvement closely connect with diether/Mg molar ratio. The stereospecificity of catalyst intensively depends on the structure of diether as internal donor. The possible model of multi‐active sites on heterogeneous Ziegler–Natta catalyst is proposed to explain these phenomena. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1399–1404, 2006  相似文献   

9.
Heterogeneous Ziegler–Natta catalyst of MgCl2 (ethoxide type)/TiCl4/diether was prepared. 2,2‐Diisobutyl‐1,3‐dimethoxy propane (DiBDMP), diether, was used as internal donor. Slurry polymerization of propylene was carried out using the catalyst in dry heptane while triethylaluminium (TEA) was used as co‐catalyst. The co‐catalyst effects, such as catalyst molar ratio, polymerization temperature, H2 pressure, external donor, triisobutylaluminium (TiBA) and monomer pressure, on the activity of the catalyst and isotacticity index (II) of the polymers obtained were studied. Rate of polymerization versus polymerization time is of a decay type with no acceleration period. There are an optimum Al/Ti molar ratio and temperature to obtain the highest activity of the catalyst. The maximum activity was obtained at 60 °C. Increasing the monomer pressure to 1 010 000 Pa linearly increased the activity of the catalyst. Addition of hydrogen to 151 500 Pa pressure increased activity of the catalyst from 2.25 to 5.45 kg polypropylene (PP) (g cat)?1 h?1 using 505 000 Pa pressure of monomer. The II decreased with increasing Al/Ti ratio, monomer pressure, hydrogen pressure and increased with increasing temperature to 60 °C, following with decrease as the temperature increases. Productivity of 11.55 kg (PP) (g cat)?1 h?1 was obtained at 1 010 000 Pa pressure of monomer and temperature of 60 °C. Addition of methyl p‐toluate (MPT) and dimethoxymethyl cyclohexyl silane (DMMCHS) as external donors decreased the activity of the catalyst sharply, while the II slightly increased. Some studies of the catalyst structure and morphology of the polymer were carried out using FTIR, X‐ray fluorescence, scanning electron microscopy and Brunauer–Emmett–Teller techniques. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
The effect of the porosity of Ziegler–Natta catalyst particles on early fragmentation, nascent polymer morphology, and activity were studied. The bulk polymerization of propylene was carried out with three different heterogeneous Ziegler–Natta catalysts under industrial conditions at low temperatures, that is, with a novel self‐supported catalyst (A), a SiO2‐supported catalyst (B), and a MgCl2‐supported catalyst (C), with triethyl aluminum as a cocatalyst and dicyclopentyl dimethoxy silane as an external donor. The compact catalyst A exhibited no measurable porosity and a very low surface area (<5 m2/g) by Brunauer–Emmet–Teller analysis, whereas catalysts B and C showed surface areas of 63 and 250 m2/g, respectively. The surface and cross‐sectional morphologies of the resulting polymer particles at different stages of particle growth were analyzed by scanning electron microscopy and transmission electron microscopy. The compact catalyst A showed homogeneous and instantaneous fragmentation already in the very early stages of polymerization, which is typically observed for porous MgCl2‐supported Ziegler–Natta catalysts. Moreover, the compact catalyst particles gave rise to almost perfectly spherical polymer particles with a smooth surface. In contrast, the silica‐supported catalyst B gave rise to particles having a cauliflower morphology, and the second reference catalyst C produced fairly spherical polymer particles with a rough surface. All of the three catalysts exhibited similar activities of 450 g of polypropylene/g of catalyst after 30 min of polymerization, and most interestingly, the comparative kinetic data presented indicated that the reaction rates were not influenced by the porosity of the catalyst. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008.  相似文献   

11.
The bisupported Ziegler–Natta catalyst system SiO2/MgCl2 (ethoxide type)/TiCl4/di‐n‐butyl phthalate/triethylaluminum (TEA)/dimethoxy methyl cyclohexyl silane (DMMCHS) was prepared. TEA and di‐n‐butyl phthalate were used as a cocatalyst and an internal donor, respectively. DMMCHS was used as an external donor. The slurry polymerization of propylene was studied with the catalyst system in n‐heptane from 45 to 70°C. The effects of the TEA and H2 concentrations, temperature, and monomer pressure on the polymerization were investigated. The optimum productivity was obtained at [Al]/[DMMCHS]/[Ti] = 61.7:6.2:1 (mol/mol/mol). The highest activity of the catalyst was obtained at 60°C. Increasing the H2 concentration to 100 mL/L increased the productivity of the catalyst, but a further increase in H2 reduced the activity of the catalyst. Increasing the propylene pressure from 1 to 7 bar significantly increased the polymer yield. The isotacticity index (II) decreased with increasing TEA, but the H2 concentration, temperature, and monomer pressure did not have a significant effect on the II value. The viscosity‐average molecular weight decreased with increasing temperature and with the addition of H2. Three catalysts with different Mg/Si molar ratios were studied under the optimum conditions. The catalyst with a Mg/Si molar ratio of approximately 0.93 showed the highest activity. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1177–1181, 2003  相似文献   

12.
High‐cis polybutadiene produced by catalyst systems based on a rare earth is an elastomer used to produce green tires. This type of tire presents lower rolling resistance, which allows higher fuel economy, and thus fewer chemical compounds are discharged into the atmosphere. In this work, the influence of electron donors [tetrahydrofuran (THF) and tetramethylethylenediamine (TMEDA)] present in the polymerization solvent on the microstructure and molecular weight characteristics of the polybutadiene produced by neodymium catalysts was studied. The catalyst synthesis was carried out in glass bottles for 1 h at a temperature between 5 and 10°C. The catalyst components were diisobutylaluminum hydride, neodymium versatate, and tert‐butyl chloride. The polymerization reaction was carried out for 2 h. The reaction temperature was kept at 70± 3°C. The addition of TMEDA or THF above a determined concentration reduced the catalytic activity, molecular weight, and concentration of cis‐1,4 units (<96%), whereas the polydispersity increased. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2539–2543, 2005  相似文献   

13.
A method for quantitative evaluation of kinetic constants in Ziegler–Natta and metallocene olefin polymerizations is presented. The method comprises some fundamental steps, which include the initial design of a statistical experimental plan, the execution of the designed experiments, the development of simple mathematical models to describe the polymerization, and the estimation of kinetic parameters from available rate, gel permeation chromatography, and NMR data. The method is applied to the slurry propylene polymerization, using a conventional first generation Ziegler–Natta catalyst, in a lab‐scale polymerization reactor. It is shown that the proposed method allows the successful interpretation of experimental olefin polymerization data and the quantitative evaluation of kinetic constants, which can be inserted into a process simulator to provide an accurate picture of actual industrial plant behavior. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2076–2108, 2001  相似文献   

14.
The polymerization of propylene was carried out with an MgCl2‐supported TiCl4 catalyst (with diisobutyl phthalate as an internal donor) in the absence and presence of hydrogen (H2) as a chain‐transfer agent. Different structures of alkylaluminum were used as cocatalysts. The effects of the alkyl group size of the cocatalyst, H2 feed, and feed time on the propylene polymerization behaviors were investigated. The catalyst activity significantly decreased with increasing alkyl group size in the cocatalyst. The molecular weight and polydispersity index (PDI) increased with increasing alkyl group size. With the introduction of H2, the catalyst activity increased significantly, whereas the molecular weight and PDI of polypropylene (PP) decreased. Additionally, the effect of the polymerization time in the presence of H2 on the propylene polymerization was studied. The molecular weight distribution curve was bimodal at short polymerization times in the presence of H2, and we could control the molecular weight distribution of PP by changing the polymerization time in the presence of H2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
A method for quantitative evaluation of kinetic constants in Ziegler–Natta and metallocene olefin polymerizations presented previously (Matos, V.; Mattos Neto, A. G.; Pinto, J. C. J Appl Polym Sci 2001, 79, 2076) is adapted to allow the estimation of kinetic constants for bulk propylene polymerizations by using a conventional fourth‐generation high‐activity Ziegler–Natta catalyst (HAC). In this particular case, reaction rate profiles are not available, so that estimation of kinetic data must rely on average polymer yields. The method comprises some fundamental steps, including the initial design of a statistical experimental plan, the execution of the designed experiments, the development of simple mathematical models to describe the polymerization, and the estimation of kinetic parameters from available yields, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) data. It is shown that the proposed method allows the successful interpretation of experimental olefin polymerization data and the quantitative evaluation of kinetic parameters, which can be inserted into a process simulator to provide an accurate picture of actual industrial plant behavior. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 3226–3245, 2002  相似文献   

16.
The morphological and kinetic characteristics of novel Ziegler–Natta catalysts were studied. Catalysts were prepared by Borealis Polymers Oy using a new synthesis technique (emulsion technology). Video microscopy was used to study the growth of single catalyst particles during polymerization in the gas and liquid phases. The distribution of single particle activity was very narrow in the catalyst without external support and was rather broad in the the silica‐supported catalyst. Video microscopy of molten polymer particles allowed observation of the process and degree of fragmentation of the catalyst particles. A correlation between the activation period during the initial stage of polymerization and catalyst fragmentation was found. Fragmentation was faster and more uniform with the catalyst without external support than with the silica‐supported catalyst. Scanning electron microscopy provided information on morphology evolution and shape replication of the catalyst particles. With the catalyst without external support, good shape replication was observed, and compact and spherical particles were formed. With the silica‐supported catalyst, shape replication was poor, and nonspherical porous polymer particle were formed. Modeling of the kinetics of propylene polymerization was done using a simple three‐step reaction scheme neglecting mass and heat transport effects. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2191–2200, 2005  相似文献   

17.
Heterogeneous Ziegler–Natta TiCl4 catalyst using MgCl2 and SiO2 as supports was prepared under controlled conditions. Mg(OEt)2 was used as a starting material and was expected to convert to active MgCl2 during catalyst preparation. Due to the high surface area and good morphological control, SiO2 was chosen as well. Slurry copolymerization of ethylene and propylene (EPM) was carried out in dry n‐heptane by using the catalyst system SiO2/MgCl2/TiCl4/EB/TiBA or TEA/MPT/H2 at temperatures of 40–70°C, different molar ratios of alkyl aluminum : MPT : Ti, hydrogen concentrations, and relative and total monomers pressure. Titanium content of the catalyst was 2.96% and surface area of the catalyst was 78 m2/g. Triisobutyl aluminum (TiBA) and triethyl aluminum (TEA) were used as cocatalysts, while ethyl benzoate (EB) and methyl p‐toluate (MPT) were used as internal and external donors, respectively. H2 was used as a chain‐transfer agent. Good‐quality ethylene propylene rubber (EPR) of rubber was obtained at the ratio of [TiBA] : [MPT] : [Ti] = 320 : 16 : 1 and polymerization temperature was 60°C. When TiBA was used as a cocatalyst, a higher and more rubberlike copolymer was obtained. For both of the cocatalysts, an optimum ratio of Al/Ti was obtained relative to the catalyst productivity. Ethylene content of the copolymer obtained increased with increasing TiBA concentration, while inverse results were obtained by using TEA. Addition of H2 increased the reactivity of the catalyst. The highest product was obtained when 150 mL H2/L solvent was used. Increasing temperature from 40 to 70°C decreased the productivity of the catalyst, while irregular behavior was observed on ethylene content. Relative pressure of PP/PE = 1.4 : 1 and total pressure of 1 atm was the best condition for the copolymerization. Polymers with ethylene contents of 25–84% were obtained. Increasing ethylene content of EPR decreased Tg of the polymer obtained to a limiting value. Viscosity‐average molecular weight (Mv) decreased with increasing temperature and TiBA and H2 concentration. However, increasing the polymerization time increased the Mv. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2597–2605, 2004  相似文献   

18.
The effects of media viscosity, mixing speed, and injection time on catalyst average particle size (APS), particle size distribution (PSD), and morphology in both conditions, with and without emulsifier, were investigated. Supports were prepared using a so‐called recrystallization method; then they were catalyzed under the same condition. To show the effects of emulsifier on the final product's properties such as catalyst activity, polymer isotacticity, and so on, two types of catalysts were polymerized and finally their results were compared. Scanning electron microscopy micrographs were used for morphological study. Results show that by increasing the media viscosity and injection time, APS of the catalyst support was decreased. But by increasing the mixing speed, APS was decreased and PSD was broadened. It was found that emulsifier reduces the sensitivity of APS and PSD of catalyst when the support preparation conditions are changed. Consequently, by employing emulsifier, highly improved catalyst was produced. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
2,6‐Bis(imino)pyridyl iron catalyst and traditional Ziegler–Natta catalyst were combined together as tandem catalytic system, activated with the mixture of TEA and MAO, and used for synthesis of branched polyethylene by in situ polymerization of ethylene. The branched polyethylene with branches from 8/1000C to 29/1000C was produced by adjusting reaction conditions: the amount of TEA, MAO, iron catalyst used, and reaction temperatures. Not only the short branches such as ethyl and butyl but also the longer branches (hexyl and longer than hexyl) were detected in the products. The products exhibited higher molecular weight and broader molecular weight distribution than those obtained from metallocene catalysts, which would provide the materials excellent mechanical properties and processability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

20.
A novel MgCl2/SiO2‐supported Ziegler–Natta catalyst was prepared using a new one‐pot ball milling method. Using this catalyst, polyethylenes with different molecular weight distributions were synthesized. The effects of the [Si]/[Mg] ratio, polymerization temperature and [Al]/[Ti] ratio on the catalytic activity, the kinetic behaviour and the molecular weight and the polydispersity of the resultant polymer were studied. It was found that the polydispersity index of the polymer could be adjusted over a wide range of 5–30 through regulating the [Si]/[Mg] ratio and polymerization temperature, and especially when the [Si]/[Mg] ratio was 1.70, the polydispersity index could reach over 25. This novel bi‐supported Ziegler–Natta catalyst is thus useful for preparing polyethylene with a required molecular weight distribution using current equipment and technological processes. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号