首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, poly(o‐anisidine) [POA], poly(o‐anisidine‐co‐aniline) [POA‐co‐A], and polyaniline [PANi] were chemically synthesized using a single polymerization process with aniline and o‐anisidine as the respective monomers. During the polymerization process, p‐toluene sulfonic acid monohydrate was used as a dopant while ammonium persulfate was used as an oxidant. N‐methyl‐pyrolidone (NMP) was used as a solvent. We observed that the ATR spectra of POA‐co‐A showed features similar to those of PANi and POA as well as additional ones. POA‐co‐A also achieved broader and more extended UV–vis absorption than POA but less than PANi. The chemical and electronic structure of the product of polymerization was studied using Attenuated Total Reflectance spectroscopy (ATR) and UV–visible spectroscopy (UV–vis). The transition temperature of the homopolymers and copolymers was studied using differential scanning calorimetry and the viscosity average molecular weight was studied by using dilute solution viscometry. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
The effects of synthesis‐solvent composition, initiator concentration, comonomer type and monomer purity on the volume swelling ratios, and polymer‐solvent interaction parameter χ have been investigated as a function of temperature. Non‐ionic N‐isopropylacrylamide (NIPAAM) homopolymer gels, poly[NIPAAM‐co‐(dimethyl itaconate)] (P(NIPAAM‐co‐DMI)) and poly[NIPAAM‐co‐(itaconic acid)] (P(NIPAAM‐co‐IA)) gels containing hydrophobic (DMI) and hydrophilic (IA) comonomers were prepared by free radical polymerization using potassium persulfate (KPS) –N, N, N′, N′‐tetramethyl ethylene diamine (TEMED) (redox initiator) in the presence of an N, N′‐methylene bis(acrylamide) (MBAAM) cross‐linking agent. The synthesis‐solvent composition (40/60 mixture of water/methanol and water) and initiator concentration employed significantly affected the properties of the NIPAAM gels. The transition temperatures of P(NIPAAM‐co‐IA) gels synthesized in water/methanol mixture were higher than that of the gel obtained in water. Furthermore, χ values of the NIPAAM homopolymer gel prepared with higher KPS content was an increasing function of temperature, while χ values of the sample obtained with lower initiator concentration changed around a critical solubility value 0.50. The results obtained also show that the interactions between monomer and solvent molecules in the reaction media (ie composition of the pregel solution) have an important effect on the formation and properties of the network structure (ie pore sizes of the gels). © 2000 Society of Chemical Industry  相似文献   

3.
A thermosensitive amphiphilic triblock copolymer, poly(d,l ‐lactide) (PLA)‐b‐poly(N‐isopropyl acrylamide) (PNIPAAM)‐b‐PLA, was synthesized by the ring‐opening polymerization of d,l ‐lactide; the reaction was initiated from a dihydroxy‐terminated poly(N‐isopropyl acrylamide) homopolymer (HO‐PNIPAAM‐OH) created by radical polymerization. The molecular structure, thermosensitive characteristics, and micellization behavior of the obtained triblock copolymer were characterized with Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, dynamic light scattering, and transmission electron microscopy. The obtained results indicate that the composition of PLA‐b‐PNIPAAM‐b‐PLA was in good agreement with what was preconceived. This copolymer could self‐assemble into spherical core–shell micelles (ca. 75–80 nm) in aqueous solution and exhibited a phase‐transition temperature around 26 °C. Furthermore, the drug‐delivery properties of the PLA‐b‐PNIPAAM‐b‐PLA micelles were investigated. The drug‐release test indicated that the synthesized PLA‐b‐PNIPAAM‐b‐PLA micelles could be used as nanocarriers of the anticancer drug adriamycin (ADR) to effectively control the release of the drug. The drug‐delivery properties of PLA‐b‐PNIPAAM‐b‐PLA showed obvious thermosensitive characteristics, and the release time of ADR could be extended to 50 h. This represents a significant improvement from previous PNIPAAM‐based drug‐delivery systems. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45304.  相似文献   

4.
Homopolymers of itaconic acid (PIA) and its copolymers with acrylamide (P(IA‐AAm) were synthesized using ceric ammonium nitrate (NH4)2Ce(NO3)6 in combination with nitrilotriacetic acid (NTA) as redox initiator, and potassium persulphate at pH 1. The chain structures of the resulting products have been studied by FTIR spectroscopy. It is concluded from a comparison of spectroscopic results with gravimetric and viscometric data that the depressions in the yields and viscosity numbers in the case of Ce(IV)–NTA redox pair result from interactions between the constituents of the redox initiator and IA. Spectra of the insoluble and pale yellow precipitates, which are formed during the first 4 h of the reaction, after addition of Ce(IV) solution to the NTA and NTA–IA homogeneous solutions, also indicate the presence of various oxidation products. Furthermore, it is observed that H‐bonded homopolymer complex obtained from PAAm–PIA blends, prepared from aqueous solutions containing equal unit moles of each polymer, contain both ordered and defective structures. © 2001 Society of Chemical Industry  相似文献   

5.
A vinyl‐modified anthraquinone (AQ) derivative (Vinyl‐AQ) is synthesized through a palladium‐mediated Suzuki coupling reaction between vinylphenylboronic acid and 2‐chloromethylanthraquinone and, subsequently, copolymerized with N,N‐dimethylacrylamide (DMAM) through free radical copolymerization in organic solvent. The chemical structure of the resulting water‐soluble copolymer, P(DMAM‐co‐AQ), is verified using techniques such as proton nuclear magnetic resonance, attenuated total reflection‐infrared spectroscopy, thermogravimetric analysis, and UV–vis spectroscopy. The evolution of the oxygen scavenging abilities of aqueous P(DMAM‐co‐AQ) solutions after UV irradiation is monitored as a function of UV irradiation time, concentration of AQ moieties, and pH. The copolymer is proved an effective UV‐triggered oxygen scavenger, leading to dissolved oxygen contents below 1 ppm for the optimized experimental conditions. This behavior is related with the appearance of novel chemical species with interesting optical properties, as suggested by the respective evolution of the UV–vis absorption and photoluminescence spectra after UV irradiation.  相似文献   

6.
A kinetic study of the aqueous polymerization of ethyl acrylate (EA) was carried out at 30°C in a dilute nitric acid medium with ammonium ceric nitrate (ACN)–n‐propanol (nPA) and ACN–ethanol as redox initiator systems. The ceric‐ion consumption was first‐order with respect to the ceric‐ion concentration with both initiator systems. The formation of complexes between Ce(IV) and reducing agents was observed. The orders with respect to the Ce(IV), reducing agents, and monomer were evaluated for aqueous polymerizations of EA initiated by Ce(IV)–nPA and Ce(IV)–ethanol redox initiator systems. The overall activation energy for the aqueous polymerization of EA was evaluated in the temperature region of 27–40°C with both initiator systems. A kinetic mechanism for the aqueous polymerization of EA initiated by redox initiator systems is presented. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 218–224, 2006  相似文献   

7.
The effect of the initiator system used in the gel preparation on the spatial inhomogeneity in poly(acrylamide) (PAAm) and poly(N,N‐dimethylacrylamide) (PDMA) hydrogels was investigated by static light scattering and elasticity measurements. The hydrogels were prepared by free‐radical crosslinking copolymerization of the monomers acrylamide (AAm) or N,N‐dimethylacrylamide (DMA) with N,N′‐methylenebisacrylamide as a crosslinker. Two different redox‐initiator systems, ammonium persulfate (APS)–N,N,N′,N′‐tetramethylethylenediamine (TEMED) and APS–sodium metabisulfite (SPS), were used to initiate the gelation reactions. Compared to the APS–TEMED redox pair, no significant scattered light intensity rise was observed during the crosslinking polymerization reactions initiated by the APS–SPS system. It was found that both PAAm and PDMA gels are much more homogeneous when the APS–SPS redox pair was used as the initiator. The results are explained by the formation of shorter primary chains as well as the delay of the gel point in APS–SPS initiated gel formation reactions. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3228–3237, 2007  相似文献   

8.
A new class of soluble conductive poly(N‐vinylcarbazole) (PVCz) compounds has been developed by oxidative matrix polymerization of N‐vinylcarbazole (NVCz) by Ce(IV) in the presence of poly(ethylene glycol) (PEG). PEG was found to be a more suitable matrix with which to obtain a stable homogenous ternary complex solution when compared with poly(acrylic acid) (PAA) and poly(vinylpyrrolidone) (PVP). The role of PEG, NVCz and Ce(IV) concentration, order of component addition, the structure of the polymer matrix, molecular weight of polymer and the effect of solvent have been investigated. Obtaining soluble PEG–Ce(III)–PVCz ternary complexes was shown by cyclic voltammetric measurements, and the initial rate of formation NVCz cation radicals as calculated using UV–visible spectrophotometry. Advantageously with these soluble complexes, conductivities could be measured both in solution and in the solid state. © 2001 Society of Chemical Industry  相似文献   

9.
Photoresponsive polymer with azobenzene pendant group (PDMAA‐co‐PAPA) was synthesized by radical polymerization of N,N‐dimethylacrylamide (DMAA) and N‐4‐phenylazophenyl acrylamide (PAPA), and the characterization of the inclusion complexes of the PDMAA‐co‐PAPA with α‐cyclodextrin (α‐CD) were performed by FTIR, GPC, 1H NMR, 2D NOESY, and UV–vis spectroscopy. It was found that the solubility of PDMAA‐co‐PAPA and α‐CD inclusion complexes in aqueous solution showed tunable property, which could be triggered by alternating UV–vis light irradiation at a certain temperature due to the effect of molecular recognition of α‐CD with azobenzene moiety in the polymer. After UV irradiation, the lower critical solution temperature (LCST) of the polymer aqueous solution increased slightly without α‐CD while the LCST decreased sharply at presence of α‐CD. Furthermore, UV spectroscopy showed that the photoisomerization of the polymer solution went on rapidly and reversibly, and 2D NOESY data suggested that the inclusion complexation of α‐CD with trans azobenzene moiety and the decomplexation with cis azobenzene resulted in reversible solubility behavior when objected to UV and Vis light irradiation alternately. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Single step chemical polymerization of N‐methyl aniline was carried out by using ammonium persulphate as an oxidizing agent. The conducting emeraldine salt phase of the polymers using camphor sulfonic acid and p‐toluene sulfonic acid as dopants was made by a direct process. The polymers were characterized by UV‐vis and FTIR spectroscopy, scanning electron microscopy, TGA, and conductivity measurements. The synthesized polymers were found to have very good physicochemical properties and good electrical conductivity. Conductivity measurements have shown “thermal activated behavior.” The change in resistance with respect to % relative humidity (RH) was observed, when pressed pellets of the polymer were exposed to the broad range of humidity (ranging between 20 and 100% RH). © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 812–820, 2006  相似文献   

11.
The synthesis of polyacrylonitrile‐block‐poly(ethylene oxide) (PAN‐b‐PEO) diblock copolymers is conducted by sequential initiation and Ce(IV) redox polymerization using amino‐alcohol as the parent compound. In the first step, amino‐alcohol potassium with a protected amine group initiates the polymerization of ethylene oxide (EO) to yield poly(ethylene oxide) (PEO) with an amine end group (PEO‐NH2), which is used to synthesize a PAN‐b‐PEO diblock copolymer with Ce(IV) that takes place in the redox initiation system. A PAN‐poly(ethylene glycol)‐PAN (PAN‐PEG‐PAN) triblock copolymer is prepared by the same redox system consisting of ceric ions and PEG in an aqueous medium. The structure of the copolymer is characterized in detail by GPC, IR, 1H‐NMR, DSC, and X‐ray diffraction. The propagation of the PAN chain is dependent on the molecular weight and concentration of the PEO prepolymer. The crystallization of the PAN and PEO block is discussed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1753–1759, 2003  相似文献   

12.
The reaction of 4‐(3‐hydroxynaphthalene)‐1,2,4‐triazolidine‐3,5‐dione ( 3HNTD ) with n‐propylisocyanate was performed at different molar ratios. The resulting monosubstituted urea and disubstituted urea‐urethane derivatives were obtained in high yields and were used as model compounds for polymerization reactions. 3HNTD as a monomer was used in the preparation of heterocyclic poly(urea‐urethane)s to produce photoactive polymers, by polycondensation with different diisocyanates in N,N‐dimethylacetamide (DMAc) solution. Chromophoric heterocyclic polymers containing naphthalene group, obtained in quantitative yields, possessed inherent viscosities in the range of 0.14–0.38 dL/g. The resulting poly(urea‐urethane)s is insoluble in most organic solvents, but easily soluble in polar solvents such as dimethyl sulfoxide (DMSO), DMAc, and N‐methylpyrrolidone (NMP). The polymers were characterized by IR, 1H‐NMR, elemental analysis, and TGA. Fluorimetric and UV–vis studies of the monomer as well as polymers were performed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Self‐assembly of thermo‐sensitive poly (t‐butyl acrylate)‐b‐poly(N‐isopropylacrylamide) (PtBA‐ b‐PNIPAM) micelles in aqueous medium and its applications in controlled release of hydrophobic drugs were described. PtBA‐b‐PNIPAM was synthesized by atom transfer radical polymerization and aggregated into thermo‐sensitive core‐shell micelles with regular spheres in water, which was confirmed by 1H‐NMR, fluorescence spectroscopy, transmission electron microscopic (TEM), and UV–vis spectroscopic techniques. The critical micelle concentration of micelles decreased with the increase of the hydrophobic components. The anti‐inflammation drug naproxen (NAP) was loaded as the model drug into polymeric micelles, which showed a dramatic thermo‐sensitive fast/slow switching behavior around the lower critical solution temperature (LCST). When the temperature was enhanced above LCST, release of NAP from core‐shell micelles was accelerated ascribed to the temperature‐induced deformation of micelles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
Kinetic study of aqueous polymerization of ethyl acrylate (EA) was carried out at 30 °C in dilute nitric acid medium by employing ammonium ceric nitrate (ACN)–methyl cellosolve (MC) and ACN–ethyl cellosolve (EC) as redox initiator systems. The ceric ion consumption was found to be first order with respect to ceric ion concentration with both initiator systems. The formation of complexes between Ce(IV) and reducing agents (RA) was observed. The order with respect to Ce(IV), reducing agents and monomer was evaluated for aqueous polymerization of EA by Ce(IV)–MC and Ce(IV)–EC redox initiator systems. The overall activation energy, Eoverall, for aqueous polymerization of EA was evaluated in the temperature region of 27–40 °C with both initiator systems. A kinetic mechanism for aqueous polymerization of EA initiated by redox initiator systems is presented. © 2001 Society of Chemical Industry  相似文献   

15.
A novel oligosiloxane containing alternative ladderlike structure involving viologen groups has been prepared via donor–acceptor interaction‐assisted template polymerization. The monomer used as the electron‐donor component, N,N ′‐bis(3‐methyldimethoxyl‐silylpropyl)‐4,4′‐bipyridinium dihexafluorophosphate and its precursor, N,N ′‐bis(3‐methyldimethoxyl‐silylpropyl)‐4,4′‐bipyridinium dibromide were first synthesized successfully in high yield. This oligosiloxane, which displays interesting electrochromic properties, has been characterized by FTIR, UV–vis, 1H NMR, 29Si NMR, X‐ray diffraction (XRD), and vapour pressure osmometry (VPO). © 2001 Society of Chemical Industry  相似文献   

16.
Poly(N‐isopropylacrylamide) or p‐NIPAAM gels undergo a prominent deswelling transition near physiological temperatures. Using passive microrheology, we have investigated the viscoelastic response of p‐NIPAAM gels over a frequency range not accessible to bulk rheological measurements. Overall, NIPAAM gels moderately shear stiffen with increasing frequency. More intriguingly, sample viscosity rapidly declines with increasing frequency before leveling off near the solvent viscosity. The frequency for this crossover coincides with the emergence of fast gel modes seen in dynamic light scattering (DLS) from the gel. Furthermore, we monitored viscoelastic responses on approach to the deswelling transition. Intrinsic light scattering indicates that experimental conditions are not near the critical point and that the deswelling transition is second order in nature. Nevertheless, the corresponding elastic and viscous moduli of p‐NIPAAM displayed power‐law decreases with temperature. These changes with temperature were independent of probe frequency. Power law exponents, however, are sensitive to details of the sample preparation suggesting that these viscoelastic responses vary with gel structure. Correlating our microrheological measurements with DLS from the gel matrix itself, we find that several of the observed microrheological features are closely related to the intrinsic dynamics of the p‐NIPAAM gels. In particular, the transition from gel‐ to solvent dominated dissipation coincides with a transition from fast to slow gel modes. Combining microrheology with intrinsic light scattering, therefore, provides a compelling approach to probe rheological responses and correlate them to the underlying network dynamics. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci., 2013  相似文献   

17.
This study described the synthesis of hydrochloric acid (HCl)‐doped poly (N‐methylaniline) (PNMA) with carboxylic groups containing multi‐walled carbon nanotubes (c‐MWNTs) via in situ polymerization. Based on the π–π electron interaction between c‐MWNTs and the N‐methylaniline monomer and the hydrogen bond interaction between the carboxyl groups of c‐MWNTs and imine groups of N‐methylaniline monomers, N‐methylaniline molecules were adsorbed on the surface of c‐MWNTs and polymerized to form PNMA/c‐MWNT composites. Scanning electron microscopy images showed that both the thinner fibrous phase and the larger block phase could be observed. The individual fibrous phases had diameters from several tens to hundreds of nanometers, depending on the PNMA content. Transmission electron microscopy proved that PNMA/c‐MWNTs composite fibrous phases were core (c‐MWNT)‐shell (PNMA) tubular structures. The structure of PNMA/c‐MWNT composites was characterized by FTIR, UV–vis spectra, and X‐ray diffraction patterns. The electrical conductivities of PNMA/c‐MWNT composites were much higher than that of PNMA without c‐MWNTs. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2356–2361, 2006  相似文献   

18.
The objective of this research was the surface grafting polymerization of biocompatible monomer N‐vinyl‐2‐pyrrolidone (NVP) onto a plasma‐treated nonwoven poly(ethylene terephthalate) (PET) substrate with ultraviolet (UV)‐induced methods. The effects of various parameters, such as the monomer concentration, reaction time, initiator (ammonium peroxodisulfate) concentration, and crosslinking agent (N,N′‐methylene bisacrylamide) concentration, on the grafting percentage were studied. The grafting efficiency of the modified nonwoven PET surfaces reached a maximum at 50 min of UV irradiation and with a 30 wt % aqueous NVP solution. After the plasma activation and/or grafting, the hydrophobic surface of the nonwoven was modified into a hydrophilic surface. NVP was successfully grafted onto nonwoven PET surfaces. The surface wettability showed that the water absorption of NVP‐grafted nonwoven PET (NVP‐g‐nonwoven PET) increased with increasing grafting time. NVP‐g‐nonwoven PET was verified by Fourier transform infrared spectra and scanning electron microscopy measurements. An antibacterial assessment using an anti‐Staphylococcus aureus test indicated that S. aureus was restrained from growing in NVP‐g‐nonwoven PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 803–809, 2006  相似文献   

19.
Vinylester resin‐clay hybrids were prepared by the mixing different types of organically‐modified montmorillonite (OMMT) with vinylester resin (VER) prepolymer, followed by thermal polymerization. VER prepolymer was synthesized from the reaction of diglycidylether of bisphenol‐A (DGEBA) with acrylic acid. Various types of organic ammonium salts have been used as intercalating agents for montmorillonite, including N,N‐dimethyl‐N‐(4‐vinylbenzyl)stearyl ammonium chloride (VSA), N‐allyl‐N,N‐dimethyl‐stearyl ammonium chloride (ASA) and N,N‐dimethyl‐stearyl ammonium chloride (SA). The dispersion of OMMT into VER matrix was studied by XRD, which indicates the dependence of the morphology mainly on the OMMT content. UV–vis spectra of the hybrids were used to give a quantitative value of the effect of OMMT content on the transparency of VER/OMMT hybrid films. Also, the Vickers test has been performed to study the effect of OMMT content on the surface hardness of the hybrid films. In addition, the thermal properties of the hybrids have been characterized by measuring the softening points and thermogravimetric analyses of the hybrids in comparison with the pure resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

20.
A novel amine methacrylate monomer trimethylolpropane trimethacrylate–piperazine–ethyleneglycol dimethacrylate (TMPTMA‐PPZ‐EGDMA) was synthesized by amination of trimethylolpropane trimethacrylate (TMPTMA) with excess of piperazine (PPZ) followed by reaction with ethyleneglycol dimethacrylate (EGDMA). Copolymerization of TMPTMA‐PPZ‐EGDMA with 2‐hydroxyethyl methacrylate (HEMA) was carried out by free radical polymerization using ammonium persulfate (APS) and N,N,N′,N′‐tetramethyl ethylenediamine (TEMED) as a redox initiator. The copolymers obtained were then quaternized with 1‐iodooctane. The monomers were characterized by FTIR and 1H NMR spectral studies. The molecular weights and polydispersity values of the monomers were determined with gel permeation chromatography. Quaternized copolymers containing more than 20% amine methacrylate monomer showed microporosity in the range of 9.9–10.4 μm. The antibacterial activity of the quaternized copolymers against Escherichia coli and Staphylococcus aureus was studied using UV–vis spectrophotometer and scanning electron microscopy. Quaternized copolymers showed broad‐spectrum contact‐killing antibacterial properties without releasing any active agent as checked by iodide selective ion meter. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号