首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural rubber (NR)/poly(ethylene‐co‐vinyl acetate) (EVA) blend–clay nanocomposites were prepared and characterized. The blend nanocomposites were prepared through the melt mixing of NR/EVA in a ratio of 40/60 with various amounts of organoclay with an internal mixer followed by compression molding. X‐ray diffraction patterns revealed that the nanocomposites formed were intercalated. The formation of the intercalated nanocomposites was also indicated by transmission electron microscopy. Scanning electron microscopy, used to study the fractured surface morphology, showed that the distribution of the organoclay in the polymer matrix was homogeneous. The tensile modulus of the nanocomposites increased with an increase in the organoclay content. However, an increase in the organoclay content up to 5 phr did not affect the tensile strength, but the organoclay reduced this property when it was increased further. This study also indicated that a low silicate content dispersed in the blend matrix was capable of increasing the storage modulus of the material. The addition of the organoclay also increased the decomposition temperature of the NR/EVA blends. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 353–362, 2006  相似文献   

2.
Ethylene vinyl acetate (EVA)/Mg‐Al layered double hydroxide (LDH) nanocomposites using EVA of different vinyl acetate contents (EVA‐18 and EVA‐45) have been prepared by solution blending method. X‐ray diffraction and transmission electron microscopic studies of nanocomposites clearly indicate the formation of exfoliated/intercalated structure for EVA‐18 and completely delaminated structure for EVA‐45. Though EVA‐18 nanocomposites do not show significant improvement in mechanical properties, EVA‐45 nanocomposites with 5 wt % DS‐LDH content results in tensile strength and elongation at break to be 25% and 7.5% higher compared to neat EVA‐45. The data from thermogravimetric analysis show that the nanocomposites of EVA‐18 and EVA‐45 have ≈10°C higher thermal decomposition temperature compared to neat EVA. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

3.
Ethylene–vinyl acetate (EVA) copolymers/clay nanocomposites, prepared by using nonreactive organophilic clay and reactive organophilic clay, were characterized by X‐ray diffraction and by high‐resolution transmission electron microscopy. The influence of gamma irradiation on the structure and properties of the pure EVA and EVA/clay nanocomposites was systematically investigated. In the presence of gamma radiation, the clay can effectively restrain the increase of the storage modulus of EVA/clay nanocomposites, which was supported by dynamical mechanical analysis. Gamma irradiation had almost no effect on the thermal properties of EVA/clay nanocomposites by using nonreactive organophilic clay, but it obviously improved the thermal stability of EVA/clay nanocomposites by using reactive organophilic clay. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2532–2538, 2005  相似文献   

4.
Nanostructure of poly(ethylene‐co‐vinyl acetate)/organically modified montmorillonite (MMT; EVA/organoclay) nanocomposites prepared by melt intercalation process was investigated using X‐ray diffraction (XRD) and transmission electron microscopy (TEM). Three kinds of organoclays were used to see their influences on the nanostructure of the EVA hybrids. The effects of the polar interactions between the polymer and the silicate layers of organoclays were also investigated by grafting maleic anhydride onto EVA. It was found that the strong polar interactions between the polymer and the silicate layers of organoclays are critical to the formation of polymer‐layered silicate nanocomposites. The results also showed that increasing the mixing temperature was unfavorable to improve the dispersion of organoclays in the EVA matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1901–1909, 2003  相似文献   

5.
Poly(ethylene‐co‐vinyl acetate) (EVA) and organophilic montmorillonite clay nanocomposites were manufactured in a co‐rotating twin‐screw extruder using screw speeds ranging between 200 and 800 rpm. The morphology and thermal‐mechanical and rheological properties were studied to establish processing–morphology–property relationships. Particularly for samples produced under higher screw speed ranges, X‐ray diffraction and transmission electron microscopy revealed a tendency of increased exfoliated clay. Although the mechanical properties improved by the presence of clay, they were not altered by the screw speed. The rheological behavior in the solid and melt states were evaluated and showed that the storage modulus of neat EVA subjected to higher screw speed undergoes more pronounced decrease in the storage modulus than the nanocomposites, suggesting that the clay minimizes the effect of the screw speed. This minimization effect could be explained in the light of the assessment of relaxation times that showed stronger physical interactions with the nanocomposites in the molten state. POLYM. COMPOS., 36:854–860, 2015. © 2014 Society of Plastics Engineers  相似文献   

6.
The effect of vinyl acetat (VA) on the morphological, thermal stability, and mechanical properties of heterophasic polypropylene–(ethylene‐propylene) copolymer (PP–EP)/poly(ethylene vinyl acetate) (EVA)/organoclay nanocomposites was studied. Tailored organoclay C20A was selected to enhance the exfoliation of the clay platelets. Depending on the VA content, there were two morphological organoclay populations in the systems. Both populations were directly observed by scanning transmission electron microscopy and measured by wide‐angle X‐ray diffraction and small‐angle X‐ray scattering. The content of VA in EVA originated spherical and elongated morphologies in the resultant nanocomposites. High‐VA content led to a better intercalation of the organoclay platelets. Measurement of thermal properties suggested that higher VA decreases thermal stability in samples both with and without organoclay, although nanocomposites had higher thermal stability than samples without clay. The storage modulus increased both with nanoclay and VA content. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Ethylene vinyl acetate (EVA‐45)/ethylene propylene diene terpolymer (EPDM) blend‐layered double hydroxide (LDH) nanocomposites have been prepared by solution blending of 1:1 weight ratio of EVA and EPDM with varying amounts of organo LDH (DS‐LDH). X‐ray diffraction and transmission electron microscopy analysis suggest the formation of partially exfoliated EVA/EPDM/DS‐LDH nanocomposites. Measurement of mechanical properties of the nanocomposites (3 wt% DS‐LDH content) show that the improvement in tensile strength and elongation at break are 35 and 12% higher than neat EVA/EPDM blends. Dynamic mechanical thermal analysis also shows that the storage modulus of the nanocomposites at glass transition temperature is higher compared to the pure blend. Such improvements in mechanical properties have been correlated in terms of fracture behavior of the nanocomposites using scanning electron microscopy analysis. Thermal stability of the prepared nanocomposites is substantially higher compared to neat EVA/EPDM blend, confirming the formation of high‐performance polymer nanocomposites. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

8.
Graphene nanoplatelets coated by polyaniline (GNP@PANI) and ethylene–vinyl acetate (EVA) copolymer–high‐density polyethylene (HDPE) were used for the first time to prepare high‐performance antistatic composites through an effective method that combined solution mixing and melt blending. GNP@PANI nanocomposites were fabricated by in situ polymerization to improve the dispersion of graphene nanoplatelets (GNPs) in the EVA–HDPE matrix and the compatibility between the GNPs and the EVA–HDPE matrix. The GNP@PANI nanocomposites and EVA were first prepared as a premix through solution mixing, and then, the premix and HDPE were prepared as highly antistatic composites through melt blending. The dispersion of the GNPs in the EVA–HDPE matrix and the compatibility between the GNPs and the EVA–HDPE matrix were confirmed by field emission scanning electron microscopy and transmission electron microscopy observations. The GNP@PANI–EVA–HDPE composites met the requirements for antistatic materials when the content of the GNP@PANI nanocomposites was 5 wt % with only about 1 wt % GNPs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45303.  相似文献   

9.
Ethylene vinyl acetate copolymer (EVA) and monmorillonite (MMT) nanocomposites have been investigated as a function of vinyl acetate content and molecular weight of EVA and types of substituted alkyl ammonium of MMT. It is found that vinyl acetate content and type of substituted alkyl ammonium are important factors for the intercalation behaviour of MMT in MMT/EVA nanocomposite. Maleic anhydride grafted high‐density polyethylene was used as a compatibilizer to improve the intercalation behaviour of MMT. X‐ray diffraction and transmission electron microscopy were used to characterize the intercalation/exfoliation behaviour, and mechanical properties were measured. © 2003 Society of Chemical Industry  相似文献   

10.
In this article, the combination of silicone rubber (SR) elastomer with synthetic iron montmorillonite (Fe‐MMT) to form a kind of new flame‐retardant system based on an ethylene–vinyl acetate (EVA) copolymer is first reported. Also, the flame retardancy of the EVA/SR/Fe‐MMT hybrid are compared with that of EVA/SR/natural sodium montmorillonite. The structures of the nanocomposites were characterized with X‐ray diffraction and transmission electron microscopy. Cone calorimeter tests and thermogravimetric analysis were used to evaluate the flame‐retardant properties and thermal stability of the composites, respectively. In addition, tensile tests were carried out with a universal testing machine, and the morphology of the fracture surface was observed with environmental scanning electron microscopy. We found that SR/organophilic montmorillonite (Fe‐OMT) was more effective in reducing the primary peak heat release rate of the nanocomposite, and the EVA/SR/Fe‐OMT hybrid had a higher thermal stability in the deacetylated polymer than EVA/SR/sodium organophilic montmorillonite. Moreover, the exfoliated EVA/SR/Fe‐OMT nanocomposite displayed excellent mechanical properties because of a better dispersion of Fe‐OMT in the polymer matrix, and a possible mechanism is discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
Nitrile rubber (NBR)–clay nanocomposites were prepared by co‐coagulating the NBR latex and clay aqueous suspension. Transmission electron microscopy showed that the silicate layers of clay were dispersed in the NBR matrix at the nano level and had a planar orientation. X‐ray diffraction indicated that there were some nonexfoliated silicate layers in the NBR–clay nanocomposites. Stress–strain curves showed that the silicate layers generated evident reinforcement, modulus, and tensile strength of the NBR–clay nanocomposites, which were significantly improved with an increase in the amount of clay, and strain‐at‐break was higher than that of the gum NBR vulcanizate when the amount of clay was more than 5 phr. The NBR–clay nanocomposites exhibited an excellent gas barrier property; the reduction in gas permeability in the NBR–clay nanocomposites can be described by Nielsen's model. Compared with gum NBR vulcanizate, the oxygen index of the NBR–clay nanocomposites increased slightly. The feasibility of controlling rubber flammability via the nanocomposite approach needs to be evaluated further. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3855–3858, 2003  相似文献   

12.
Partially exfoliated ethylene vinyl acetate (EVA‐40, 40% vinyl acetate content)/layered double hydroxide (LDH) nanocomposites using organically modified layered double hydroxide (DS‐LDH) have been synthesized by solution intercalation method. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) studies of nanocomposites shows the formation of exfoliated LDH nanolayers in EVA‐40 matrix at lower DS‐LDH contents and partially intercalated/exfoliated EVA‐40/MgAl LDH nanocomposites at higher DS‐LDH contents. These EVA‐40/MgAl LDH nanocomposites demonstrate a significant improvement in tensile strength and elongation at break for 3 wt% of DS‐LDH filler loading compare to neat EVA‐40 matrix. Thermogravimetric analysis also shows that the thermal stability of the nanocomposites increases with DS‐LDH content in EVA‐40. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

13.
Rubber‐based nanocomposites were prepared with octadecyl amine modified sodium montmorillonite clay and styrene–butadiene rubber with different styrene contents (15, 23, and 40%). The solvent used to prepare the nanocomposites, the cure conditions, and the cure system were also varied to determine their effect on the properties of the nanocomposites. All the composites were characterized with X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The XRD studies revealed exfoliation for the modified clay–rubber composites. The TEM photomicrographs showed a uniform distribution of the modified clay in the rubber matrix. The thickness of the particles in the exfoliated composites was around 10–15 nm. Although the FTIR study of the unmodified and modified clays showed extra peaks due to the intercalation of the amine chains into the gallery, the spectra for the rubber–clay nanocomposites were almost the same because of the presence of a very small amount of clay in the rubber matrix. All the modified clay–rubber nanocomposites displayed improved mechanical strength. The styrene content of the rubber had a pronounced effect on the properties of the nanocomposites. With increasing styrene content, the improvement in the properties was greater. Dicumyl peroxide and sulfur cure systems displayed similar strength, but higher elongation and slightly lower modulus values were obtained with the sulfur cure system. The curing of the samples at four different durations at 160°C showed that the cure time affected the properties. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 698–709, 2004  相似文献   

14.
Poly(ethylene‐co‐vinyl alcohol) (EVOH)/carbon black (CB) and EVOH/graphite (GP) electro‐conductive composites were prepared by saponification of poly(ethylene‐co‐vinyl acetate) (EVA)/CB and EVA/GP composites in ethanol/KOH solution. The electrical resistivity change and positive temperature coefficient (PTC) behavior of these composites were investigated. The volume resistivity of EVA/CB and EVA/GP composites was decreased with saponification time. It can be observed that EVA/CB10 and EVA/GP05 composites showed a significant reduction in resistivity after saponification for 1 h. With the increase in saponification time, PTC peak temperature of both composites was shifted at a higher temperature. Tensile properties, morphology, and thermal behavior of the prepared composites have been also evaluated using universal test machine, scanning electron microscopy, and differential scanning calorimetry, respectively. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

15.
Nanocomposite foams were fabricated from 60/40 wt% ethylene vinyl acetate (EVA)/natural rubber (NR) blends by using azodicarbonamide as a blowing agent. Two different nanofillers (sodium montmorillonite and organoclay) were employed to study their effects on foam properties. The results were also compared with conventional (china clay)‐filled foams. Transmission electron microscopy, X‐ray diffraction, scanning electron microscopy, and three‐dimensional Microfocus X‐ray computed tomography scanning analysis were performed to characterize the EVA/NR blend morphology and foam structures. The results revealed that the nanofiller acted as a blend compatibilizer. Sodium montmorillonite was more effective in compatibilization, generating better phase‐separated EVA/NR blend morphology and improving foam structure. Higher filler loading increased the specific tensile strength of rubber foams. The rubber nanocomposite foam showed superior specific tensile strength to the conventional rubber composite foam. The elastic recovery and compressive strength of the nanocomposite foams decreased with increasing filler content, whereas the opposite trend was observed for the conventional composite foams with china clay. The thermal conductivity measurement indicated that the nanofiller had better beneficial effect on thermal insulation over china clay filler. From the present study, the nanofillers played an important role in obtaining better blend morphology as compatibilizer, rather than the nucleating agent and the nanofiller content of 5 phr (parts by weight per hundred parts of rubber) was recommended for the production of EVA/NR nanocomposite foams. J. VINYL ADDIT. TECHNOL., 21:134–146, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
Poly[ethylene‐co‐(vinyl acetate)] (EVA)/(Standard Malaysian natural rubber) (SMR L)/organoclay nanocomposites were prepared by using melt intercalation and solution blending methods. In both preparation methods, the EVA: (SMR L) ratio was prefixed at 50:50, while the organoclay loading was varied from 0 to 10 phr. The effects of two different processing routes and organoclay loading on the morphology, tensile, properties thermal properties, and flammability of the nanocomposites were studied. X‐ray diffraction results and transmission electron microscopy images proved that solution blending promotes better dispersion of organoclay than melt intercalation. Thus, the nanocomposites prepared by the solution‐blending method exhibited higher values of tensile strength, stress at 100% elongation (M100), and thermal stability. The M100 value and thermal stability improved proportionally with the increase of organoclay content, owing to the demobilizing effect and the barrier properties of the organoclay. The optimum tensile strength value was achieved at a 2‐phr organoclay loading. Further increases in loading decreased the strength of the nanocomposites. Tensile fracture surfaces of the nanocomposites prepared by both methods showed different fracture behavior, as evidenced by scanning electron microscopy images. Flammability decreased when the organoclay loading increased for the nanocomposites prepared by both methods. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

17.
Poly (ethylene‐co‐vinyl acetate) (EVA)/clay nanocomposites containing two different organoclays with different clay loadings were prepared. The transport of gases (oxygen and nitrogen) through the composite membranes was investigated and the results were compared. These studies revealed that the incorporation of nanoclays in the polymer increased the efficiency of the membranes toward barrier properties. It was also found that the barrier properties of the membranes decreased with clay loadings. This is mainly due to the aggregation of clay at higher loadings. The morphology of the nanocomposites was studied by scanning electron microscopy, transmission electron microscopy and X‐ray scattering. Small angle X‐ray scattering results showed significant intercalation of the polymer chains between the organo‐modified silicate layers in all cases. Better dispersed silicate layer stacking and more homogeneous membranes were obtained for Cloisite® 25A based nanocomposites compared with Cloisite® 20A samples. Microscopic observations (SEM and TEM) were coherent with those results. The dispersion of clay platelets seemed to be maximized for 3 wt % of clay and agglomeration increased with higher clay loading. Wide angle X‐ray scattering results showed no significant modifications in the crystalline structure of the EVA matrix because of the presence of the clays. The effect of free volume on the transport behavior was studied using positron annihilation spectroscopy. The permeability results have been correlated with various permeation models. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Acrylonitrile–butadiene rubber (NBR) hybrid nanocomposites with organoclays were prepared by melt mixing, and their properties were compared with those of conventional rubber compounds filled with carbon black and silica. Based on X‐ray diffraction and transmission electron microscopy, the NBR nanocomposites obtained were found to form generally an intercalated structure, although they formed an exfoliated structure when the organoclay content was low enough, <2 parts per 100 rubber. The NBR nanocomposite showed a simultaneous improvement in ultimate strength and stiffness, which is generally in a trade‐off relation in rubbery materials. A characteristic fracture morphology of ‘laminated board‐type’ was observed for NBR nanocomposites instead of typical ‘cross‐hatched’ morphology in conventional rubber composites. The NBR nanocomposites also showed much higher hysteresis and tension set. Copyright © 2003 Society of Chemical Industry  相似文献   

19.
Ethylene‐vinyl acetate copolymer (EVA)/montmorillonite (MMT) clay nanocomposites with varying degree of intercalation and exfoliation have been prepared using direct melt blending techniques with various degrees of polarity (9, 18, and 28 wt% vinyl acetate [VA]) and two different types of clay modification. Morphological characterization using wide‐angle X‐ray scattering (WAXS) and transmission electron microscopy (TEM) have indicated/confirmed the presence of intercalation and/or a combination of intercalation and exfoliation existing in the nanocomposites. The effects of these (simple intercalation or mixed intercalation/exfoliation) states and the effect of changing matrix polarity (by changing VA wt% content) on the nanocomposite mechanical behavior were studied. There is sufficient evidence from the mechanical studies that 1) the presence of nanoclay can simultaneously improve modulus and strength of the nanocomposites, and 2) the mechanical properties are a combined function of the clay concentration and the nanocomposite morphology (due to the VA wt% and presence of clay). It is shown here that interrelation between the VA wt% content and the clay exfoliation affects the mechanical properties in a way that has a positive and increasing slope with increasing loading of clay. It is shown that a clear understanding of the nanocomposite mechanical properties can be obtained from its morphological analysis. POLYM. ENG. SCI., 45:889–897, 2005. © 2005 Society of Plastics Engineers  相似文献   

20.
This paper studies the morphology and tensile properties of nanocomposite foams of blends of low‐density polyethylene (LDPE) and poly(ethylene‐co‐vinyl acetate) (EVA). Preparations of LDPE/EVA nanocomposites were conducted in an internal mixer, and then samples were foamed via a batch foaming method. Morphology of the nanocomposite blends and nanocomposite foams was studied by X‐ray diffraction, transmission electron microscopy, and scanning electron microscopy. Morphological observations showed that nanoparticle dispersion in the polymeric matrix was affected by the blend ratio in a way such that EVA‐rich samples had a better dispersion of nanoclay than LDPE‐rich ones. In addition, the tensile properties of the nanocomposite foams were related to different variables such as blend ratio, clay content, and foam density. J. VINYL ADDIT. TECHNOL., 2010. © 2010 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号