首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel copolyesteramides were synthesized by reacting trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) with ε‐caprolactam (CLM) in the presence of stannous octoate [Sn(II) Oct.] as a catalyst. Various techniques, including 1H‐NMR, IR, DSC, and viscosity, were used to elucidate structural characteristics and thermal properties of the resulting copolymers. Data showed that the optimal reaction condition for the synthesis of the copolymers was obtained by using 3 wt % Sn(II) Oct. at 170°C for 24 h. The DSC analysis demonstrated amorphous structure for most of the copolymers. The glass‐transition temperature of the copolymers shifts to a higher temperature with increasing Hpr/CLM molar ratio. In vitro degradation of these poly(N‐CBz‐Hpr‐co‐CLM)s was evaluated by weight loss measurements. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1615–1621, 2002  相似文献   

2.
A series of novel ABA‐type block copolymers were synthesized by polymerization of trans‐4‐hydroxy‐L ‐proline (HyP) in the presence of various molecular weight poly(ethylene glycol)s (PEGs), a bifunctional OH‐terminated PEG using stannous octoate as catalyst. The optimal reaction conditions for the synthesis of the copolymers were obtained with 5 wt % stannous octoate at 140°C under vacuum (20 mmHg) for 24 h. The synthesized copolymers were characterized by IR spectroohotometry, proton nuclear magnetic resonance, differential scanning calorimetry, and Ubbelohde viscometer. The glass transition temperature (Tg) of the copolymers shifted to significantly higher temperature with increasing the number average degree of polymerization and HyP/PEO molar ratio. In contrast, the melting temperature (Tm) decreased with increasing the HyP/PEO molar ratio. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1581–1587, 2001  相似文献   

3.
Poly(L ‐lactide‐co‐ε‐caprolactone)‐b‐poly(L ‐lactide) [P(LL‐co‐CL)‐b‐PLL] diblock copolyesters were synthesized in a two‐step process with 1‐dodecanol (DDC) and stannous octoate as the initiating system. In the first‐step reaction, a 50:50 mol % amorphous poly(L ‐lactide‐co‐ε‐caprolactone) [P(LL‐co‐CL)] copolyester was synthesized via the bulk copolymerization of L ‐lactide and ε‐caprolactone, which was followed by the polymerization of the PLL crystalline block at the end chain in the second‐step reaction. The yielded copolyesters were characterized with dilute‐solution viscometry, gel permeation chromatography, 1H‐ and 13C‐NMR, and differential scanning calorimetry methods. The molecular weights of the P(LL‐co‐CL) copolyesters from the first‐step reaction were controlled by the DDC concentrations, whereas in the second‐step reaction, the molecular weights of the P(LL‐co‐CL)‐b‐PLL diblock copolyesters depended on the starting P(LL‐co‐CL) copolyester molecular weights and L ‐lactide/prepolymer molar ratios. The starting P(LL‐co‐CL) copolyester molecular weights and PLL block lengths seemed to be the main factors affecting specific thermal properties, including the melting temperature (Tm), heat of melting (ΔHm), crystallizing temperature (Tc), and heat of crystallizing (ΔHc), of the final P(LL‐co‐CL)‐b‐PLL diblock copolyester products. Tm, ΔHm, Tc, and ΔHc increased when the PLL block lengths increased. However, these thermal properties of the diblock copolyesters also decreased when the P(LL‐co‐CL) block lengths increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
With D,L ‐lactic acid and Nϵ‐carbobenzoyloxy‐L ‐lysine [Lys(Z)] as the starting monomer material and tin dichloride as the catalyst, the drug carrier material poly(lactic acid‐coNϵ‐carbobenzoyloxy‐L ‐lysine) was synthesized via direct melt polycondensation. The copolymer was systematically characterized with intrinsic viscosity testing, Fourier transform infrared spectroscopy, 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and X‐ray diffraction. The influences of different feed molar ratios were examined. With increasing molar feed content of Lys(Z), the intrinsic viscosity, weight‐average molecular weight, and polydispersity index (weight‐average molecular weight/number‐average molecular weight) gradually decreased. Because of the introduction of Lys(Z) with a big aromatic ring into the copolymer, the glass‐transition temperature gradually increased with increasing feed charge of Lys(Z), and all of the copolymers were amorphous. The copolymers, with weight‐average molecular weights from 10,500 to 6900 Da, were obtained and could reach the molecular weight level of poly(lactic acid) modified by Lys(Z) via the ring‐opening polymerization of the cyclic intermediates, such as lactide and morpholine‐2,5‐dione. However, a few terminal carboxyl groups might have been deprotected during the polymerization reaction under high temperatures. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
Methoxy poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (MPEG‐PCL) or MPEG‐b‐poly(L ‐lactide) (MPEG‐PLLA) diblock copolymers were prepared by the polymerization of CL or LA, using MPEG as an initiator in the presence of stannous octoate. MPEG‐b‐poly(ε‐caprolactone‐ran‐L ‐lactide) (MPEG‐PCLA) diblock copolymers with different chemical composition of PCL and PLLA were also prepared by adjusting the amount of CL and LA from MPEG in the presence of stannous octoate. In degradation study, the degradation of the MPEG‐PCLA diblock copolymers mainly depends on the PCL and PLLA segments present in their structure. MPEG‐PCLA, with intermediate ratio of PCL and PLLA segment, completely degraded after 14 weeks. Meanwhile, partially degraded MPEG‐PCLA segments and parent MPEG segments were observed at higher PCL or PLLA segment contents. Introduction of PLLA into the PCL segments caused a lowering of the crystallinity of the diblock copolymers, thus, inducing a faster incoming of water into the copolymers. We confirmed that the diblock copolymers, with lower degree of crystallinity, have degraded more rapidly. POLYM. ENG. SCI., 46: 1242–1249, 2006. © 2006 Society of Plastics Engineers  相似文献   

6.
A series of biodegradable poly(L ‐lactide‐co‐?‐caprolactone) (PCLA) copolymers with different chemical compositions are synthesized and characterized. The mechanical properties and shape‐memory behaviors of PCLA copolymers are studied. The mechanical properties are significantly affected by the copolymer compositions. With the ?‐caprolactone (?‐CL) content increasing, the tensile strength of copolymers decreases linearly and the elongation at break increases gradually. By means of adjusting the compositions, the copolymers exhibit excellent shape‐memory effects with shape‐recovery and shape‐retention rate exceeding 95%. The effects of composition, deformation strain, and the stretching conditions on the recovery stress are also investigated systematically. A maximum recovery stress around 6.2 MPa can be obtained at stretching at Tg ? 15°C to 200% deformation strain for the PCLA70 copolymer. The degradation results show that the copolymers with higher ?‐CL content have faster degradation rates and shape‐recovery rates, meanwhile, the recovery stress can maintain a relative high value after 30 days in vitro degradation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

7.
A series of novel copolymers of trans-4-hydroxy-L-proline (Hpr) and L-lactide (LLA) were synthesized by ring opening copolymerization, using stannous octoate as a catalyst. These new copolymers have pendant amino functional groups along the polymer backbone chain. Various techniques, including 1H NMR, IR, DSC, and the use of a Ubbelohde viscometer, were used to elucidate structural characteristics, thermal properties, and degradation behavior of the resulting copolymers. Data showed that the optimal reaction condition for the synthesis of the copolymers was obtained using 3 wt% stannous octoate at 140C for 24 h. The DSC analysis demonstrated amorphous structure for most of the copolymers. The glass transition temperatures (T g) of the copolymers shift to a higher temperature with increasing Hpr/LLA molar ratio. In vitro degradation of these poly(N-CBz-Hpr-co-L-LA) was evaluated by weight loss measurements.  相似文献   

8.
Novel polyesters, poly[(ε‐caprolactone)‐co‐(N‐trityl‐L ‐serine‐β‐lactone)]s, were prepared by copolymerizing ε‐caprolactone (CL) with N‐trityl‐L ‐serine‐β‐lactone (TSL) using ZnEt2 as the catalyst. The number‐average molecular weights were determined which ranged from 2.7 × 104 to 4.9 × 104 Da with dispersity values ranging from 1.6 to 1.8. The structures of the copolymers were investigated by means of 1H NMR, 13C NMR and infrared spectroscopies, thermogravimetric analysis and differential scanning calorimetry. The results indicated that CL and TSL monomer units were randomly distributed within the copolymer backbone structures and the ratios of TSL to CL in the copolymers were close to those in the feeds. After removal of the trityl group under mild condition, a new polyester with side amino groups provided by serine units was obtained. L929 cell culturing test indicated good biocompatibility of the polyester with or without protective groups. © 2012 Society of Chemical Industry  相似文献   

9.
Directly starting from d ,l ‐lactic acid (LA) and pyrimidine‐2,4,5,6‐tetramine (PTA), the copolymer P(LA‐co‐PTA) as a novel potential solid compatible polymeric flame retardant is synthesized as designed via melt polycondensation. When the molar feed ratio LA/PTA is 60/1, the optimal synthetic conditions are discussed. After the prepolymerization at 140°C for 8 h, using 0.5 wt % stannous oxide as the catalyst, the melt copolymerization at 160°C for 4 h gives the copolymer with the biggest intrinsic viscosity 0.88 dL g?1. The structures and properties of P(LA‐co‐PTA)s at different molar feed ratios are characterized by FT‐IR, 1H‐NMR, 13C‐NMR, GPC, XRD, DSC, and TGA. The decomposition temperatures of P(LA‐co‐PTA)s are higher than these of homopolymer poly(d,l ‐lactic acid) (PDLLA). All copolymers have higher char yield than PDLLA, and the more PTA in the feed content, the higher char yield. What's more, there are some residues at 700–800°C, indicating that P(LA‐co‐PTA)s have good charring ability. When the monomer PTA is introduced into polylactic acid by chemical bonding as purine (PU) unit formed during the condensation, both the PTA's relatively higher nitrogen content and the PU's similar structure with flame retardant benzimidazole are beneficial to improve the thermal stability and charring ability, especially the latter. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40275.  相似文献   

10.
With the aim to develop novel biodegradable materials with good flexibility and fast degradation rate, random copolymers of ?‐caprolactone (CL) and p‐dioxanone (PDO) with a full range of compositions were synthesized in bulk using stannous octoate as the ring‐opening catalyst. The chemical composition and number average sequence lengths of CL and PDO units determined by 1H‐NMR were used to correlate with various properties of the copolymers. Although both CL and PDO are crystalline components, only one crystalline phase could be present for each copolymer. The low limit of average block length for the copolymers that could crystallize is 3.22 for LCL and 3.43 for LPDO, respectively. The crystallinity and crystalline morphology of the copolymers are dependent on the crystalline component as well as its number average sequence length. Irrespective of composition, all the copolymers have good solubility in chloroform with glass transition temperature much below room temperature, implying good flexibility of the materials. The incorporation of PDO component could significantly increase the water wettability of the copolymer surfaces and thereby accelerate the degradation rate of the materials. In conclusion, flexible biodegradable polymers with adjustable degradation and crystalline properties were acquired by random copolymerization of CL and PDO, which are expected to use in tissue engineering and drug delivery fields. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2978–2986, 2013  相似文献   

11.
Hydrophobically modified water‐soluble polymers have been prepared by copolymerization of 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS) and isodecyl methacrylate (iDMA) in N,N‐dimethylformamide under nitrogen atmosphere, varying the composition feed. Fluorescence spectroscopy was used to further confirm the copolymers self‐aggregate in water. Critical concentration of the self‐aggregate formation (CAC) decreased by increasing the molar fraction of iDMA in the AMPSco copolymers and varied between 1.20 and 0.04 g/L depending on the degree of hydrophobic modification. Hence, copolymer composition and charge density allowed tuning the pseudomicellar characteristics of these new amphiphilic copolymers. The addition of a salt or a low‐molecular‐weight surfactant was studied. Binding of CTAB to the AMPSco copolymers leads to a high decrease of CAC, i.e., 0.006 g/L. Effect of the composition in the viscosimetric behavior of the hydrophobically modified copolymers AMPSco was investigated. The removal of single metal ions, Cu2+, and m‐cresol from aqueous solutions by ultrafiltration with the help of the copolymers was investigated. Equilibrium dialysis experiments demonstrate that the formation of hydrophobic microdomains can be used to control the sequestration of foulants, and thus these novel copolymers have potential application as polymeric surfactants in micellar‐enhanced ultrafiltration processes for water purification. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

12.
This study describes the synthesis of amphiphilic ABC‐triblock copolymers comprising a central pseudopoly(4‐hydroxy‐L ‐proline) segment and terminal hydrophilic poly(ethylene glycol)methyl ether as well as hydrophobic poly(ε‐caprolactone) blocks. Differential scanning calorimetry, 1H‐NMR spectroscopy, and gel permeation chromatography are used to characterize the copolymers. The thermal properties (Tg and Tms) of the triblock copolymers depend on the composition of polymers. Larger amounts of ε‐CL incorporated into the macromolecular backbone increased Tg and Tms. Fluorescence spectroscopy, transmission electron microscopy, and dynamic light scattering are utilized to investigate their micellar characteristics in the aqueous phase. Observations showed a higher critical micelle concentration with higher hydrophilic components in the copolymers. The micelle exhibited a core‐shell‐corona and/or vesicle shape, and the average size was less than 300 nm. Drug entrapment efficiency and drug loading of micelles depending on the composition of block polymers are also described. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

13.
A random terpolymer of L ‐lactide (LL), ?‐caprolactone (CL) and glycolide (G) has been synthesized in bulk at 130 °C using stannous octoate as the coordination–insertion initiator. The terpolymer, poly(LL‐ran‐CL‐ran‐G), has been characterized by a combination of analytical techniques: GPC, 1H NMR, 13C NMR, DSC and TG. Molecular weight characterization by GPC shows a unimodal molecular weight distribution with values of M n = 1.01 × 105 g mol?1 and M w / M n = 2.17. Compositional and microstructural analysis by 1H NMR and 13C NMR, respectively, reveal a terpolymer composition of LL:CL:G = 74:15:11 (mol%) with a chain microstructure consistent with random monomer sequencing. This latter view is supported by the terpolymer temperature transitions (Tg and Tm) from DSC and the thermal decomposition profile from TG. The results and, in particular, the conclusion that it is a random rather than a statistical terpolymer are discussed in the light of current theories regarding the mechanism of this type of polymerization. © 2001 Society of Chemical Industry  相似文献   

14.
Three types of copolymers were synthesized and characterized. First, triblock ABA copolymers [where A is a homopolymer of ?‐caprolactone and B is poly(ethylene glycol)] were prepared by the ring‐opening polymerization of poly(ethylene glycol) with ?‐caprolactone in the presence of stannous octoate (Sn(Oct)2). The spectral, thermal, and mechanical properties of one sample of these copolymers were studied, and it was discovered that these types of copolymers were more hydrophilic, possessed lower melting points, and had superior mechanical properties (greater toughness) than poly(?‐caprolactone). Second, triblock ABA copolymers [where A is a homopolymer of L ‐lactide and B is poly(ethylene glycol)] were prepared by the ring‐opening polymerization of poly(ethylene glycol) with L ‐lactide in the presence of Sn(Oct)2. The mechanical properties of these copolymers were studied, and it was found that they were tougher and softer than poly(L ‐lactide). Third, novel ABA triblock copolymers [where A is a copolymer of ?‐caprolactone and L ‐lactide and B is poly(ethylene glycol)] were prepared, and 1H‐NMR and 13C‐NMR spectra of these copolymers indicated a microblock structure for the two end blocks. The stress–strain behavior revealed low yields and high toughness for these copolymers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 2072–2081, 2002  相似文献   

15.
A facile approach is offered to synthesize well‐defined amphiphilic ABC triblock copolymers composed of poly(ethylene glycol) monomethyl ether (MPEO) as A block, poly(L ‐lysine) (PLLys) as B block, and poly(ε‐caprolactone) (PCL) as C block by a combination of ring‐opening polymerization (ROP) and click reactions. The propargyl‐terminated poly(Z‐L ‐lysine)‐block‐poly(ε‐caprolactone) (MPEO‐PzLLys‐PCL) diblock copolymers were synthesized via the ring‐opening polymerization of Nε‐carbobenzoxy‐L ‐lysine N‐carboxyanhydride (Z‐L ‐Lys NCA) in DMF at room temperature using propargyl amine as an initiator and the resulting amino‐terminated poly(Z‐L ‐lysine) then used in situ as a macroinitiator for the polymerization of ε‐caprolactone in the presence of stannous octoate as a catalyst. The triblock copolymers poly(ethylene glycol) monomethyl ether –block‐poly(Z‐L ‐lysine)‐block‐poly(ε‐caprolactone) (MPEO‐PzLLys‐PCL) were synthesized via the click reaction of the propargyl‐terminated PzLLys‐PCL and azido‐terminated poly(ethylene glycol) monomethyl ether (PEO‐N3) in the presence of CuBr and 1,1,4,7,7‐pentamethyldiethylenetriamine (PMDETA) catalyst system. After the removal of Z groups of L ‐lysine units, amphiphilic and biocompatible ABC triblock copolymers MPEO‐PLLys‐PCL were obtained. The structural characteristics of these ABC triblock copolymers and corresponding precursors were characterized by NMR, IR, and GPC. These results showed the click reaction was highly effective. Therefore, a facile approach is offered to synthesize amphiphilic and biocompatible ABC triblock copolymers consisting of polyether, polypeptide and polyester. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Bulk polymerization of ?‐caprolactone (CL), 1,4‐dioxan‐2‐one (PDX), and mixtures of PDX and CL was carried out by initiation with Al(OsecBu)3 in a co‐rotating twin‐screw extruder through a fast single‐step process. Both homopolymerizations and copolymerization of PDX and CL proceed very rapidly and reach almost complete (co)‐ monomer(s) conversion as soon as 8 mol% of CL are added in the feed. Even though poly(1,4‐dioxan‐2‐one) (PPDX) is known to thermally degrade mainly through unzipping depolymerization promoted from the hydroxyl end‐groups and yielding PDX monomer, it turns out that the thermal stability of PPDX chains is substantially improved by the copolymerization of PDX with limited amounts of CL. Interestingly, DSC analysis of the so‐obtained P(PDX‐co‐CL) copolymers has demonstrated that a CL molar fraction as high as 11 mol% does not prevent the crystallization of the resulting copolymer, which retains a melting temperature close to 95°C. This last observation has been explained by the formation of a blocky‐like copolymer structure, in which short PPDX and PCL sequences are randomly distributed. POLYM. ENG. SCI., 45:622–629, 2005. © 2005 Society of Plastics Engineers.  相似文献   

17.
The effect of the compatibilizers, P(LLA‐co‐?CL) and P(LLA‐b‐?CL), on the morphology and hydrolysis of the blend of poly(?‐caprolactone) (PCL) and poly(L ‐lactide) (PLLA) was investigated. An addition of P(LLA‐co‐?CL) or P(LLA‐b‐?CL) into the blend could enhance the compatibility between the dispersed PCL domains and the PLLA matrix. The size of the PCL domains in the PLLA/PCL (70/30) blend containing P(LLA‐co‐?CL) reduced more significantly with an increase in the content of the compatibilizer than that in the blend containing P(LLA‐b‐?CL). The molecular weight of the PLLA/PCL blend films compatibilized with P(LLA‐co‐?CL) or P(LLA‐b‐?CL) decreased during the hydrolysis and the decrease of the molecular weight of the blend films compatibilized with P(LLA‐co‐?CL) was much more significant than that of the blend films compatibilized with P(LLA‐b‐?CL). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 1892–1898, 2002  相似文献   

18.
Diblock copolymers of poly(L ‐lactide)‐block‐poly(methyl methacrylate) (PLLA‐b‐PMMA) were synthesized through a sequential two‐step strategy, which combines ring‐opening polymerization (ROP) and atom transfer radical polymerization (ATRP), using a bifunctional initiator, 2,2,2‐trichloroethanol. The trichloro‐terminated poly(L ‐lactide) (PLLA‐Cl) with high molecular weight (Mn,GPC = 1–12 × 104 g/mol) was presynthesized through bulk ROP of L ‐lactide (L ‐LA), initiated by the hydroxyl group of the double‐headed initiator, with tin(II) octoate (Sn(Oct)2) as catalyst. The second segment of the block copolymer was synthesized by the ATRP of methyl methacrylate (MMA), with PLLA‐Cl as macroinitiator and CuCl/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA) as catalyst, and dimethyl sulfoxide (DMSO) was chosen as reaction medium due to the poor solubility of the macroinitiator in conventional solvents at the reaction temperature. The trichloroethoxyl terminal group of the macroinitiator was confirmed by Fourier transform infrared spectroscopy (FTIR) and 1H‐NMR spectroscopy. The comprehensive results from GPC, FTIR, 1H‐NMR analysis indicate that diblock copolymers PLLA‐b‐PMMA (Mn,GPC = 5–13 × 104 g/mol) with desired molecular composition were obtained by changing the molar ratio of monomer/initiator. DSC, XRD, and TG analyses establish that the crystallization of copolymers is inhibited with the introduction of PMMA segment, which will be beneficial to ameliorating the brittleness, and furthermore, to improving the thermal performance. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Blended films of poly(L ‐lactide) [ie poly(L ‐lactic acid)] (PLLA) and poly(?‐caprolactone) (PCL) without or mixed with 10 wt% poly(L ‐lactide‐co‐?‐caprolactone) (PLLA‐CL) were prepared by solution‐casting. The effects of PLLA‐CL on the morphology, phase structure, crystallization, and mechanical properties of films have been investigated using polarization optical microscopy, scanning electron microscopy, differential scanning calorimetry and tensile testing. Addition of PLLA‐CL decreased number densities of spherulites in PLLA and PCL films, and improved the observability of spherulites and the smoothness of cross‐section of the PLLA/PCL blend film. The melting temperatures (Tm) of PLLA and PCL in the films remained unchanged upon addition of PLLA‐CL, while the crystallinities of PLLA and PCL increased at PLLA contents [XPLLA = weight of PLLA/(weight of PLLA and PCL)] of 0.4–0.7 and at most of the XPLLA values, respectively. The addition of PLLA‐CL improved the tensile strength and the Young modulus of the films at XPLLA of 0.5–0.8 and of 0–0.1 and 0.5–0.8, respectively, and the elongation at break of the films at all the XPLLA values. These findings strongly suggest that PLLA‐CL was miscible with PLLA and PCL, and that the dissolved PLLA‐CL in PLLA‐rich and PCL‐rich phases increased the compatibility between these two phases. © 2003 Society of Chemical Industry  相似文献   

20.
Poly(N‐isopropylacrylamide‐co‐hydroxyethyl methacrylate) [P(NIPAM‐co‐HEMA)] copolymer was synthesized by controlled radical polymerization from respective N‐isopropylacrylamide (NIPAM) and hydroxyethyl methacrylate (HEMA) monomers with a predetermined ratio. To prepare the thermosensitive and biodegradable nanoparticles, new thermosensitive graft copolymer, poly(L ‐lactide)‐graft‐poly(N‐isoporylacrylamide‐co‐hydroxyethyl methacrylate) [PLLA‐g‐P(NIPAM‐co‐HEMA)], with the lower critical solution temperature (LCST) near the normal body temperature, was synthesized by ring opening polymerization of L ‐lactide in the presence of P(NIPAM‐co‐HEMA). The amphiphilic property of the graft copolymers was formed by the grafting of the PLLA hydrophobic chains onto the PNIPAM based hydrophilic backbone. Therefore, the graft copolymers can self‐assemble into uniformly spherical micelles ò about 150–240 nm in diameter as observed by the field emission scanning electron microscope and dynamic light scattering. Dexamethasone can be loaded into these nanostructures during dialysis with a relative high loading capacity and its in vitro release depends on temperature. Above the LCST, most of the drugs were released from the drug‐loaded micelles, whereas a large amount of drugs still remains in the micelles after 48 h below the LCST. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号