首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article concerns the in situ compatibilization of immiscible isotactic polypropylene/butadiene‐styrene‐butadiene triblock copolymer blends (i‐PP/SBS) by means of a reactive mixture. For this purpose, maleated PP (PP‐MAH) and SBS (SBS‐MAH) were used as functionalized polymers and 4,4′‐diaminediphenylmethane was used as a coupling agent between maleated polymers, resulting in a graft copolymer. Binary blends i‐PP/SBS, nonreactive ternary blends i‐PP/PP‐MAH/SBS, and reactive ternary blends i‐PP/PP‐MAH/SBS‐MAH with varying diamine and anhydride molar ratios were prepared. Torque measurements suggest a graft copolymerization during the melt blending for ternary reactive blends, but the extension of the grafting does not vary with the diamine and anhydride molar ratio, but with the elastomer concentration. The morphology of the blends was investigated by scanning electron microscopy. The morphology of binary and ternary nonreactive blends is similar, exhibiting elastomer domains disperse in the i‐PP matrix, whose sizes increase with elastomer concentration. On the other hand, the elastomer domain size in the ternary reactive blends is practically independent of the blends composition and of the diamine and anhydride molar ratio. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 847–855, 2002  相似文献   

2.
Environmentally benign, low cost and abundantly available short pineapple leaf fibers (PALF), found mostly in the Tropical rain forest climates are ideal materials for manufacture of thermoplastic polymer‐matrix composites. Here, mechanical and thermal properties of composites of maleic anhydride grafted polypropylene (MA‐g‐PP) and chemically modified short PALF are studied as a function of different fiber lengths at 10 vol % fibers loading with fiber orientation in the longitudinal direction. The effects of fiber lengths and fiber loading on the morphological properties are assessed via observations by scanning electron microscopy. Fiber length of 6 mm oriented longitudinally at 10 vol % fibers loading in PP is the optimum and recommended composition, where 73% increase in impact properties, 37% increase in the flexural modulus, 33% increase in flexural strength, and 14% increase in vicat softening temperature are observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
The morphology and mechanical properties of isotactic polypropylene (iPP) and poly(ethylene‐co‐methyl acrylate) (EMA) blends were investigated. Various EMA copolymers with different methyl acrylate (MA) comonomer content were used. iPP and EMA formed immiscible blends over the composition range studied. The crystallization and melting reflected that of the individual components and the crystallinity was not greatly affected. The size of the iPP crystals was larger in the blends than those of pure iPP, indicating that EMA may have reduced the nucleation density of the iPP; however, the growth rate of the iPP crystals was found to remain constant. The tensile elongation at break was greatly increased by the presence of EMA, although the modulus remained approximately constant until the EMA composition was greater than 20%. EMA with a 9.0% MA content provided the optimum effect on the mechanical properties of the blends. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 175–185, 2003  相似文献   

4.
In this study, a novel film structure of corn zein coated on polypropylene (PP) synthetic films for food packaging applications was developed, and the mechanical properties of the resulting coated film, as affected by the coating formulation, were investigated. Composite structures of PP films coated with corn zein were obtained through a simple solvent casting method. Different amounts of corn zein (5 and 15%) were dissolved in 70 and 95% aqueous ethanol solution at 50°C. Solutions of corn zein plasticized with poly(ethylene glycol) and glycerol (GLY) at various levels (20 and 50%) were applied on corona‐discharge‐treated PP. A statistical analysis based on full factorial design was performed to examine the influence of the coating formulation on the final properties of the corn‐zein‐coated PP films. A significant (p < 0.05) improvement in the coated film's mechanical properties was observed compared to those of the uncoated PP. The effect of the plasticization of the coating solutions was also quite significant. In general, GLY provided better improvements in the mechanical properties of the corn‐zein‐coated PP films. The statistical analysis of the results showed that the corn‐zein and plasticizer concentrations and plasticizer type used in the coating formulations were more effective parameters and had significant effects on the mechanical behavior of the coated PP films. In conclusion, corn‐zein coatings could have potential as alternatives to conventional synthetic polymers used in composite multilayer structures for food packaging applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

5.
In situ microfibrillar composites (PP/mPA66) of modified polyamide66 (mPA66) with polypropylene (PP) were prepared by using a “post‐compatibilization” technique. The mPA66 was firstly obtained by reactive extrusion of PA66 resin with a specially designed compatibilizer, which was then blended with PP through extrusion combined with a hot stretching and subsequently quenching process. The PP/mPA66 in situ microfibrillar composites were comparatively studied with simply blended samples of PP/PA66 that were prepared by blending PA66 and PP together with (or without) the same compatibilizer through extrusion. PA66‐g‐PP (and/or elastomers) graft copolymer formation in mPA66 was identified by dissolution test and infrared spectroscopy measurement, the compatibilizer is unevenly dispersed with large domains in PA66 as observed by scanning electron microscope (SEM). In PP/mPA66 composites, the in situ generated PA66 microfibrils have a rather nonuniform diameter distribution and a very rough surface. SEM observations for the fractured surface illustrated that PP/mPA66 composites have structural characteristics of stronger adhesion and moderate flexibility of the interface. Enhanced compatibilization between the PA66 microfibrils with the PP matrix resulted in improved mechanical properties of the PP/mPA66 composites. With optimized composition, the PP/mPA66 composite has notched Izod impact strength, flexural modulus, and tensile yield stress of 1.49, 1.16, and 0.99 times as those of the neat PP, respectively. Such enhanced mechanical properties balance and improved interface adhesion were not found in the simply blended samples of PP/PA66 with or without the specially designed compatibilizer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

6.
Copolypropylene/organoclay nanocomposites are prepared by melt intercalation method in this research. Two different routes for addition of compatibilizer are examined, i.e. addition in the twin‐screw extruder along with the polymer and the clay powder simultaneously and premixing the compatibilizer with the reinforcement in a batch mixer before addition to the polypropylene (PP) matrix. Morphology, tensile and impact properties and deformation mechanisms of the samples made via two procedures are studied and compared with those of the noncompatibilized system. To study the structure of nanocomposites, x‐ray diffraction and transmission electron microscopy techniques are utilized. The deformation mechanisms of different samples are examined via reflected and transmitted optical microscopy. The results reveal that introduction of compatibilizer and also the procedure in which the compatibilizer is added to the compound, affect structure and mechanical properties of nanocomposite. The elastic modulus of PP‐clay nanocomposite has increased 11.5% with incorporation of compatibilizer. Also, introduction of organoclay without compatibilizer facilitates crazing at the notch tip of PP in 3PB testing. Incorporation of compatibilizer, however, makes difficulties in initiation and growth of crazes at the notch tip. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
The effect of the delignification of hornbeam fibers on the mechanical properties of wood fiber–polypropylene (PP) composites was studied. Original fibers and delignified fibers at three levels of delignification were mixed with PP at a weight ratio of 40:60 in an internal mixer. Maleic anhydride (0.5 wt %) as the coupling agent and dicumyl peroxide (0.1 wt %) as the initiator were applied. The produced composites were then hot‐pressed, and specimens for physical and mechanical testing were prepared. The results of the properties of the composite materials indicate that delignified fibers showed better performance in the enhancement of tensile strength and tensile modulus, whereas the hardness of the composites was unaffected by delignification. Delignified fibers also exhibited better water absorption resistance. Notched impact strength was higher for delignified fiber composites, but it was reduced at higher delignification levels. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4759–4763, 2006  相似文献   

8.
This study was performed with commercially available phenyl trimethoxysilane (PTMS) and neoalkoxytitanate [i.e., neopentyl(diallyl)oxytri(dioctyl)phosphato titanate (LICA 12)] as coupling agents. PTMS and LICA 12 were used to treat talc and kaolin to compare their effects with untreated fillers upon incorporation into polypropylene (PP). Single‐filler PP composites (containing either talc or kaolin) and hybrid‐filler composites (containing a mix of both talc and kaolin) were compounded in a twin‐screw extruder and subsequently injection‐molded into dumbbells. The incorporation of PTMS and LICA 12 slightly decreased the tensile and flexural properties in terms of modulus and strength but increased the elongation at break for both single‐filler and hybrid‐filler composites. There was also a significant improvement in the impact strength of the composites, particularly those treated with LICA 12. The hybrid composites, through the synergistic coalescence of positive characteristics from talc and kaolin with the aid from chemical treatment provided an economically advantageous material with mechanical properties comparable to those of the single‐filler‐filled PP composites. Further investigations on flow and morphological properties were also done to correlate the mechanical properties of the single‐ and hybrid‐filler‐filled PP composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Polypropylene (PP) composites filled with wood flour (WF) were prepared with a twin‐screw extruder and an injection‐molding machine. Three types of ecologically friendly flame retardants (FRs) based on ammonium polyphosphate were used to improve the FR properties of the composites. The flame retardancy of the PP/WF composites was characterized with thermogravimetric analysis (TGA), vertical burn testing (UL94‐V), and limiting oxygen index (LOI) measurements. The TGA data showed that all three types of FRs could enhance the thermal stability of the PP/WF/FR systems at high temperatures and effectively increase the char residue formation. The FRs could effectively reduce the flammability of the PP/WF/FR composites by achieving V‐0 UL94‐V classification. The increased LOI also showed that the flammability of the PP/WF/FR composites was reduced with the addition of FRs. The mechanical property study revealed that, with the incorporation of FRs, the tensile strength and flexural strength were decreased, but the tensile and flexural moduli were increased in all cases. The presence of maleic anhydride grafted polypropylene (MAPP) resulted in an improvement of the filler–matrix bonding between the WF/intumescent FR and PP, and this consequently enhanced the overall mechanical properties of the composites. Morphological studies carried out with scanning electron microscopy revealed clear evidence that the adhesion at the interfacial region was enhanced with the addition of MAPP to the PP/WF/FR composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
The spinnability and mechanical properties of poly(propylene) (PP)/zeolite‐supported Ag+ (zeolite‐Ag)/ethylene vinyl acetate (EVA) ternary blend fibers were studied. It was found that the spinning temperature of the ternary blend fibers was decreased in the presence of EVA. The addition of 2 wt % EVA substantially improved the spinnability of the blend system by enhancing its flowability. It was also found that the ternary fiber with EVA28 (28 wt % vinyl acetate content) showed balanced improvement of mechanical properties by a concomitant increase in modulus and tensile strength. The improvements of spinnability and mechanical properties suggested that a core–shell structure of zeolite‐Ag/EVA28 particles, with zeolite‐Ag as the core and EVA28 as the shell, was formed and remained during the melt‐mixing process of the blended chips and during the course of fiber processing. EVA probably enhanced the binding between the zeolite‐Ag and the PP matrix, as made evident in SEM microphotographs. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1460–1466, 2005  相似文献   

11.
The effect of the in situ compatibilization on the mechanical properties of PP/PS blends was investigated. The application of Friedel-Crafts alkylation reaction to the PP/PS-blend compatibilization was assessed. Styrene/AlCl3 was used as catalyst system. The graft copolymer (PP-g-PS) formed at the interphase showed relatively high emulsifying strength. Scission reactions, occurring in parallel with grafting, were verified for PP and PS at high catalyst concentration, but no crosslinking reactions were detected. Tensile tests were performed on dog-bone specimens of the blends. Both elongation at break and toughness increased with catalyst concentration. At 0.7% AlCl3, a maximum was reached, which amounted to five times the value of the property for the uncompatibilized blend. At higher catalyst concentrations these properties decreased along with the PP molecular weight due to chain-scission reactions. On the other hand, the tensile strength did not change with the catalyst concentration. The in situ compatibilized blends showed considerable improvement in mechanical properties, but were adversely affected by chain scissions at high catalyst contents.  相似文献   

12.
Composites of palm fibers and poly(propylene) (PP) were compounded in an extruder at 200°C. The composites were subsequently injection molded into standard tensile specimens for mechanical characterization. The fracture morphology of the specimens was analyzed by scanning electron microscopy. It was observed that the composite modulus increased with the increase of fiber content, indicating the existence of adhesion between PP and the much stiffer palm fibers. However, the adhesion was not satisfactory and resulted in a decrease in the composite tensile strength with fiber addition. The compatibilizer Epolene E‐43 was used to minimize this incompatibility between the wood fibers and the PP matrix. The maleated PP additive enhanced the fiber–matrix adhesion, resulting in an improvement in composite performance. Also, small fibers showed better mechanical properties than those of long fibers. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2581–2592, 2004  相似文献   

13.
The physicomechanical properties, thermal properties, odor, and volatile organic compound (VOC) emissions of natural‐flour‐filled polypropylene (PP) composites were investigated as a function of the zeolite type and content. The surface area and pore structure of the natural and synthetic zeolites were determined by surface area analysis and scanning electron microscopy, respectively. With increasing natural and synthetic zeolite content, the tensile and flexural strengths of the hybrid composites were not significantly changed, whereas the water absorption was slightly increased. The thermal stability and degradation temperature of the hybrid composites were slightly increased with increasing natural and synthetic zeolite content. At natural and synthetic zeolite contents of 3%, the various odors and VOC emissions of the polypropylene/rice husk flour and polypropylene/wood flour hybrid composites were significantly reduced because of the absorption of the odor and VOC materials in the pore structures of the natural and synthetic zeolites. These results suggest that the addition of natural and synthetic zeolites to natural‐flour‐filled thermoplastic polymer composites is an effective method of reducing their odor and VOC emissions without any degradation of their mechanical and thermal properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
The thermal and mechanical properties and the morphologies of blends of poly(propylene) (PP) and an ethylene–(vinyl alcohol) copolymer (EVOH) and of blends of PP/EVOH/ethylene–(methacrylic acid)–Zn2+ ionomer were studied to establish the influence of the ionomer addition on the compatibilization of PP/EVOH blends and on their properties. The oxygen transmission rate (O2TR) values of the blends were measured as well. PP and EVOH are initially incompatible as was determined by tensile tests and scanning electronic microscopy. Addition of the ionomer Zn2+ led to good compatibility and mechanical behaviour was improved in all blends. The mechanical properties on extruded films were studied for 90/10 and 80/20 w/w PP/EVOH blends compatibilized with 10 % of ionomer Zn2+. These experiments have shown that the tensile properties are better than in the injection‐moulded samples. The stretching during the extrusion improved the compatibility of the blends, diminishing the size of EVOH domains and enhancing their distribution in the PP matrix. As was to be expected, the EVOH improved the oxygen permeation of the films, even in compatibilized blends. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
The compatibilizing effect of the triblock copolymer poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) on the morphological and mechanical properties of virgin and recycled polypropylene (PP)/high‐impact polystyrene (HIPS) blends was studied, with the properties optimized for rigid composite films. The components of the blend were obtained from municipal plastic waste, PP being acquired from mineral water bottles (PPb) and HIPS from disposable cups. These materials were preground, washed only with water, dried with hot air, and ground again (PPb) or agglutinated (HIPS). Blends with three different weight ratios of PPb and HIPS (6:1, 6:2, and 6:3) were prepared, and three different concentrations of SEBS (5, 6, and 7 wt %) were used for investigations of its compatibilizing effect. Scanning electron microscopy showed that SEBS reduced the diameter of dispersed HIPS particles in the globular and fibril shapes and improved the adhesion between the disperse phase and the matrix. However, SEBS interactions with PPb and HIPS influenced the mechanical properties of the compatibilized PPb/HIPS/SEBS blends. An adequate composition of PP/HIPS, for both virgin and recycled blends, for applications in composite films with characteristics similar to those of synthetic paper was obtained with a minimal amount of SEBS and a maximal HIPS/PP ratio in the range of concentrations studied. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2861–2867, 2003  相似文献   

16.
The present article focuses on the effect of two types of inorganic fillers (SiO2 and CaCO3) on the mechanical properties of PP/SEBS blend. The nominal particle diameters of SiO2 and CaCO3 are 7 nm and 1 μm, respectively. The studied blend ratios were PP/SEBS/SiO2 (CaCO3) = 75/22/3 and 73/21/6 vol %. The morphology of polymer blends was observed and the distributions of the SEBS, SiO2, and CaCO3 particles were analyzed by transmission electron microscopy (TEM). Tensile tests were conducted at nominal strain rates from 3 × 10?1 to 102 s?1. The apparent elastic modulus has the local strain‐rate dependency caused by SiO2 nanoparticles around SEBS particles in the blend of PP/SEBS/SiO2. The yield stress has weak dependency of morphology. The absorbed strain energy has strong dependency of the location of SiO2 nanoparticle or CaCO3 fillers and SEBS particle in the morphology. It is considered that such morphology, in which inorganic nanoparticles are located around SEBS particles, can prevent the brittle fracture while the increased local strain rate can enhance the apparent elastic modulus of the blend at the high strain rate. On the basis of the results of this study, the location and size of inorganic nanoparticles are the most important parameters to increase the elastic modulus without decreasing the material ductility of the blend at both low and high strain rates. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
An experimental polypropylene (PP) nanocomposite, containing approximately 4 wt % of an organophilic montmorillonite clay, was prepared and characterized, and its properties were compared with those of talc‐filled (20–40 wt %) compositions. Weight reduction, with maintained or even improved flexural and tensile moduli, especially at temperatures up to 70°C, was a major driving force behind this work. By a comparison with the analytical data from a nylon 6 (PA‐6) nanocomposite, it was found that the PP nanocomposite contained well‐dispersed, intercalated clay particles; however, X‐ray diffraction, transmission electron microscopy, dynamic mechanical analysis, and permeability measurements confirmed that exfoliation of the clay in PP was largely absent. The increased glass‐transition temperature (Tg) of a PA‐6 nanocomposite, which possessed fully exfoliated particles, indicated the molecular character of the matrix–particle interaction, whereas the PP nanocomposite exhibited simple matrix–filler interactions with no increase in Tg. The PP nanocomposite exhibited a weight reduction of approximately 12% in comparison with the 20% talc‐filled PP, while maintaining comparable stiffness. Undoubtedly, considerable advantages may be available if a fully exfoliated PP nanocomposite is fabricated; however, with the materials available, a combination of talc, or alternative reinforcements, and nanocomposite filler particles may provide optimum performance. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1639–1647, 2003  相似文献   

18.
The addition of organic fillers into thermoplastic polymers is an interesting issue, which has had growing consideration and experimentation during the last years. It can give rise to several advantages. First, the cost of these fillers is usually very low. Also, the organic fillers are biodegradable (thus contributing to an improved environmental impact), and finally, some mechanical and thermomechanical properties can be enhanced. In this study, the effect of the addition of different organic fillers on the mechanical properties and processability of an extrusion‐grade polypropylene were investigated. The organic fillers came from natural sources (wood, kenaf, and sago) and were compared to short glass fibers, a widely used inorganic filler. The organic fillers caused enhancements in the rigidity and thermomechanical resistance of the matrix in a way that was rather similar to the one observed for the inorganic filler. A reduction in impact strength was observed for both types of fillers. The use of an adhesion promoter could improve their behavior. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1906–1913, 2005  相似文献   

19.
The effect of oxidized polypropylene (OPP) as new compatibilizer on the water absorption and mechanical properties of wood flour–polypropylene (PP) composites were studied and compared with maleic anhydride grafted polypropylene (MAPP). The oxidation of PP was performed in the molten state in the presence of air. Wood flour, PP, and the compatibilizers (OPP and MAPP) were mixed in an internal mixer at temperature of 190°C. The amorphous composites removed from the mixer were then pressed into plates that had a nominal thickness of 2 mm and nominal dimensions of 15 × 15 cm2 with a laboratory hydraulic hot press at 190°C. Physical and mechanical tests showed that the wood flour–PP composites with OPP exhibited higher flexural and impact properties but lower water absorption than MAPP. All of the composites with 2% compatibilizers (OPP and MAPP) gave higher flexural and impact properties and lower water absorption compared to those with 4% compatibilizers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
A previous study has shown that the adhesion between the film and substrate of film‐insert injection‐molded poly(propylene) (PP) film/PP substrate was evident with the increases in barrel temperature and injection holding pressure. In this second part of the research work, the crystallinity at the interfacial region (i.e., region between the film and the injected substrate) was extensively studied using FTIR imaging, polarized light microscopy, and DSC in an attempt to determine the level of influence that crystallinity has on the interface and bulk mechanical properties. Consequently, a more thorough and clearer picture of the influence of the inserted film on the interfacial crystallinity and subsequently the substrate mechanical properties, such as peel strength and impact strength, has been revealed. The initial proposition that crystallinity could enhance film–substrate interfacial bonding has been confirmed, judging from the higher peel strength with increasing crystallinity at the interfacial region. Nevertheless, the change in crystallinity was not only confined to the interfacial region. With the film acting as heat‐transfer inhibitor between the injected resin and the mold wall, the total crystal structure of the substrate was substantially altered, which subsequently affected the bulk mechanical properties. The lower impact strength of film‐insert injection‐molded samples compared to that of samples without film inserts provided evidence of how the film could impart inferior properties to the substrate. The difference in cooling rate between the substrate and film might also cause other defects such as warpage and/or residual stress build‐up within the product. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 294–301, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号