共查询到20条相似文献,搜索用时 15 毫秒
1.
对于装设串联补偿(串补)装置的输电线路,由于与串联电容并联的保护元件金属氧化物可变电阻(MOV)的非线性特征,使得串补线路无法直接使用常规的输电线路故障测距方法。为此,提出了一种基于分布参数模型的串补双回线故障定位算法。按照故障点相对于串补的位置分为两个子算法,利用从本端、对端推算得到的故障点处电压相等的特点,消去串补装置近故障一侧的电压,结合故障点处过渡电阻的纯电阻性和故障序网边界条件,构造故障定位函数。该方法不依赖串补装置模型,不受MOV非线性的影响,无需预知串补装置相对于故障的位置,同时不存在伪根判别问题。EMTDC/PSCAD和MATLAB仿真结果计算验证了该方法的正确性。 相似文献
2.
1 IntroductionWith the development of the power system,thedouble circuit transmission lines have been widely used.The increased complexities of power transmission systemmake the transmission line fault location studies morecomplicated and important.The fault location for thesemore complex lines has raised great attentions.Differentfault location algorithms can be developed depending onthe extracted data from one or both ends of thetransmission lines.The method using one end data isaffected by… 相似文献
3.
提出一种考虑分布参数的同杆双回线跨线及接地故障单端定位方法。首先在考虑双回线线间耦合的分布参数线路模型中,借助同向零序补偿系数以及反向零序补偿系数,定义精确的补偿电压。然后,根据测量端反向序电流与故障处反向序电流相位的关系,推算故障处电压相位及幅值。最后,利用测量电压、电流以及推算故障处的电压构造故障定位函数,并通过求解相位突变点识别故障位置。仿真结果表明,该方法适用于多种跨线及接地故障,无需其他变电站的信息,且受故障位置、过渡电阻、相序排列等因素的影响小,定位精度高,易于实现。 相似文献
4.
基于线路分布参数模型,提出一种双端非同步故障测距算法。该算法根据电路叠加原理,将故障后的网络等效为正常状态网络和故障分量网络的叠加,然后以单相系统为例,以故障距离和非同步时间作为未知数,对正常电流电压相量和故障分量分别建立测距方程组,推导出故障距离的解析表达式,并给出了伪根的识别方法。文章还分析了该算法对三相系统的适用性。仿真结果表明,该算法消除了非同步时间的影响,适用于各种故障类型,无需选相,计算量小,测距精度高,较好地解决了双端测距中的数据不同步问题。 相似文献
5.
基于线路分段参数的非全程同塔双回线故障定位算法 总被引:1,自引:0,他引:1
对非全程同塔双回输电线路故障定位问题进行研究。首先,对非全程同塔双回线的特点进行分析,并针对传统伪根识别法无法适用于非全程同塔双回线故障定位的问题,在分析伪根存在与否的基础上,提出一种换模量伪根识别算法,该算法可以有效识别故障支路与非故障支路的伪根情况。进而,提出一种基于非全程同塔双回线路分段参数的双端工频量故障定位算法,该算法将故障支路辨识与故障点定位相结合,在线路全程内均可完成故障定位,不受故障类型、各端数据不同步和过渡电阻等因素影响。ATP-EMTP仿真结果表明,所提算法可行、有效。 相似文献
6.
当电力系统在功率低频振荡等动态情况下发生故障时,电力信号的幅值和频率往往表现出一定的动态特性,然而目前大部分同杆双回线故障定位方法并未考虑这一因素。为此提出了动态条件下基于线路参数修正的同杆双回线故障定位方法,新方法拓展了传统的静态信号模型,建立时变的信号模型使其能正确表示信号的动态特性,并加入基于同步相量测量单元(phasor measurement units,PMUs)的动态同步相量测量算法估计的信号相量值,从而可以在动态条件下精确修正线路参数,最后通过牛顿迭代算法得到准确的故障距离。应用PSCAD/EMTDC软件模拟各种工况对算法进行验证,仿真结果表明:与传统的算法相比,经过线路参数修正的方法在动态条件下具有较高的故障定位精度,并且不受故障位置、过渡电阻、故障类型和故障初始角的影响。 相似文献
7.
8.
9.
由于分布电容和过渡电阻的影响,现有单端阻抗法无法适用于高压输电线路单端故障测距。针对这一问题,采用分布参数模型建模,定义了参考位置操作电压计算式。分别给出了相位法定位函数和幅值法定位函数,经理论分析可知:当参考点位置位于故障点左侧或右侧时,电压定位函数具有不同的相位特性,其在故障点前后会发生唯一一次阶跃性突变;而所取的参考点与故障点重合时,电压定位函数幅值达到最小。在此基础上提出了适用于高压输电线路单相接地故障的单端相位测距法和单端幅值测距法。仿真结果表明,这2种方法受故障位置、过渡电阻和负荷电流的影响很小,高阻接地故障时依然具有很高的测距精度,因此都能够满足现场的应用要求。 相似文献
10.
分布参数输电线路故障模拟及测距 总被引:6,自引:0,他引:6
本文从分布参数线路方程出发,提出了分布参数高压输电线路的故障模拟与测距的算法,对模拟部分与EMTP作了对比,以实例说明了EMTP“集中电阻线路模型”与本文“RLC全分布线路模型”所计算的故障后稳态分量的差异,并指出了差异所在。 相似文献
11.
12.
13.
14.
基于分布参数模型的牵引网故障测距新算法 总被引:1,自引:0,他引:1
简单、快速、准确的故障测距是电气化铁道牵引网急需解决的问题,为此,提出一种利用线路单端电压及电流的测量值来进行精确故障定位的新算法,该算法采用分布参数模型,精确考虑了分布电容对测距算法的影响,大大提高了测距算法的精确度.针对牵引网供电臂距离较短的特点,对故障距离函数进行线性化处理,在保证精度的同时,提高了算法的简洁和快速性.通过电磁暂态仿真引擎(EMTDC)仿真验证,该算法基本不受过渡电阻、故障发生角等因素的影响,测距结果准确且鲁棒性强. 相似文献
15.
16.
基于分布参数模型的比相式单相故障单端测距算法 总被引:1,自引:1,他引:1
高压输电线路故障以单相接地短路为主,针对此类故障开展高精度的故障定位研究具有重要意义。基于集中参数模型的单端测距算法忽略分布电容的影响,在实际故障点距测量点较远时必然带来较大的误差。针对该问题文章提出了一种基于分布参数线路模型的电压、电流比相式单端测距算法,其原理为:通过相模变换与反变换估算出沿线各点故障相电压与相电流的分布,利用线路故障相残压与故障分量电流相位差最小的特征进行定位。该算法基于工频量,对采样率要求不高,大量的ATP仿真试验验证了该算法的有效性。 相似文献
17.
为了克服传统测距方法存在的测距精度与测距速度此消彼长的矛盾,提出了一种基于测距函数幅相特性的高压长线路故障测距新算法。该方法在将故障位置作为已知条件看待并引入参考点与之匹配的思想基础上,构造了一个具有双曲正弦函数幅相特性的故障测距函数。根据故障测距函数相位特性迅速确定故障点所在的最小可能范围,在此范围内根据测距函数幅值特性精确定位故障点。该方法理论上不存在伪根,所需的运算量远小于传统方法所需的运算量,能有效克服传统方法存在的测距精度和测距速度之间的矛盾。仿真结果表明,该方法不受过渡电阻、故障位置和故障发生角等因素的影响,在线路参数严重不均匀情况下依然保持较高的测距精度,具有良好的鲁棒性和快速性。 相似文献
18.
串联补偿设备中的串联电容通常采用金属氧化物变阻器(metal oxide varistor,MOV)作为其主保护。MOV具有典型的非线性特征,故障后其会对串联补偿设备等值阻抗产生较大的影响。而传统基于模型参数的故障位置识别方法均未考虑故障后MOV动作特性对串联补偿设备等值阻抗的影响。根据Goldsworthy大量实验测试结论,提出了一种新的、基于模型参数的串联补偿线路故障位置识别方法。该方法从原理上计及了故障过程中MOV的动作特性对串联补偿线路阻抗的影响;而在实现过程中其又无需知道串联补偿装置的相关参数和具体工作状态,而仅通过采样值的数字运算就能得到准确的故障位置识别结果。与传统算法相比,该方法在整个故障过程中均能得到稳定的判断结果。通过EMTDC/PSCAD和MATLAB软件仿真计算验证了该方法的准确性和有效性。 相似文献
19.
不受TA饱和影响的高压输电线路故障测距算法 总被引:1,自引:1,他引:1
基于线路分布参数模型,考虑电流互感器(TA)饱和或断线导致某一侧电流畸变或不可用的情况,提出了一种输电线路故障测距新算法。该方法通过分析短路序网关系,利用两侧电压和未饱和侧电流,求出不同短路类型下沿线电压和电流的分布,根据过渡阻抗的纯电阻性质,得出当且仅当在故障点处电压和流经过渡电阻的电流的相位相同,由此定位故障点。因此,该测距方法可以不受一侧TA饱和或断线的影响。ATP-EMTP仿真结果也证明了该方法正确、有效。 相似文献
20.
基于在线计算线路分布参数的故障定位方法 总被引:3,自引:0,他引:3
为了提高测距精度,提出了一种不需要双端电压电流同步测量的分布参数模型故障测距算法。该算法根据故障后沿线电压的分布规律,在不要求双端数据同步时,利用线路两端故障前电压和电流相量在线计算线路参数;使用一维搜索方法算出故障点的位置,其具体测距算法是采用前置带通滤波器与全波傅氏算法相结合的滤波算法以提取相当精确的基频分量。仿真计算表明,该算法估算线路参数和故障距离较准确,无需解长线方程,且不受故障类型、线路参数变化和系统运行方式、过渡电阻等因素影响。 相似文献