首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrasonic experiments, done on ZnSe:Ni crystal with the dopant concentration 5.5×1019 cm−3, revealed precursor phenomenon in the form of lattice softening at temperatures significantly exceeding the temperature of structural transition (Tc=14.5 K). It proved to be that the order parameter of the transition was associated with the shear deformation ε4. Investigation of thermal conductivity (κ) in the same temperature region pointed out that the Jahn-Teller (JT) effect could be responsible for the anomalous behavior of κ(T) and lattice instability.  相似文献   

2.
The thermopower coefficient α0 and the electrical conductivity σ of Pb1 − x Ag x Te solid solutions, where x = (0–0.007), are measured at T = 300 K. The hole concentration p is calculated. All samples are of the p type. With increasing silver content, α0 decreases, while p and σ increase. For undoped crystals, α0 = 251.0 μV/K, p = 1.1 × 1018 cm−3, and σ = 165 Ω−1 cm−1. At the silver-solubility limit for x = 0.007, α0 = 193.8 μV/K, p = 2.3 × 1018 cm−3, and σ = 216 Ω−1 cm−1. The hole concentration in all samples is much lower than the concentration of introduced silver atoms. The hole gas in Pb1 − x Ag x Te solid solutions is weakly degenerate in the entire silver-concentration range.  相似文献   

3.
Etch pit density and spatial compositional uniformity data are presented for organometallic vapor phase epitaxial Hg1−x Cdx Te grown by the direct alloy and interdiffused growth methods. For alloy growth, composition variation is as low as Δx=0.004 and 0.02 over 2- and 3-in diam areas, respectively; while for growth on CdZnTe substrates, etch pit density values lower than 2×105 cm−2 have been achieved. For interdiffused growth on CdZnTe, etch pit density values lower than 5×105 cm−2 have been obtained, while the composition variation is usually Δx≤0.004 and 0.014 over 2- and 3-in diam areas, respectively. Data demonstrate that the choice of particular CdZnTe substrate strongly affects the subsequent etch pit density measured in the layer. Reasonably uniform n-type doping over 3-in diam area using the source triethylgallium is also reported for both growth methods.  相似文献   

4.
Mechanical fatigue of thin copper foil   总被引:1,自引:0,他引:1  
The electrodeposited and the rolled 12 to 35 μm thick copper foils are subjected to the bending/unbending strain-controlled flex fatigue over a wide range of strain amplitudes. The fatigue life is associated with an increase in electrical resistance of the specimen beyond a preassigned threshold. For each foil type, in the rolled or as-deposited as well as in the (recrystallization-like) annealed conditions, the inverse Coffin-Manson (C-M) relationship between strain amplitude (Δε/2) and fatigue life (Nf) is established in the high Δε/2 (low Nf) and the low Δε/2 (high Nf) regimes. The Nf, Δε/2, and C-M slopes (c,b) are utilized to calculate the cyclic strain hardening (n′) and fatigue ductility (Df) parameters. It is shown that for a given foil thickness, an universal relationship exists between Df and the strength (σ) normalized fatigue life (Nf/σ). The propagation of fatigue crack through the foil thickness and across the sample width is related to the unique fine grain structure for each foil type: pancaked grains for the rolled foil and equiaxed grains for the electrodeposited foil. The fatal failure corresponds to convergence of the through-thickness and the across-the-width fatigue cracks. The variations in (i) electrical resistance, (ii) mid-thickness microhardness and grain structure and (iii) dislocation configurations with fatigue are monitored. Except for a small but significant fatigue induced softening (or hardening), no convincing evidence of strain localization (and the associated dislocation configurations generally observed for the bulk samples) has been found.  相似文献   

5.
Undoped bulk ZnO crystals obtained from Tokyo Denpa show either resistive behavior [(5×104)−(3×105) Ohm cm) or low n-type conductivity (n ⋍1014 cm−3) with mobilities in the latter case of 130–150 cm2/V sec. The variation in resistivity may be related to the thermal instability of Li that is present in the samples. The Fermi level is pinned by 90-meV shallow donors that are deeper than the 70 meV and hydrogen-related 35-meV shallow donors in Eagle Pitcher and Cermet substrates. In all three cases, 0.3-eV electron traps are very prominent, and in the Tokyo Denpa material they dominate the high-temperature capacitance-frequency characteristics. The concentration of these traps, on the order of 2×1015 cm−3, is about 20 times higher in the Tokyo Denpa ZnO compared to the two other materials. The other electron traps at Ec −0.2 eV commonly observed in undoped n-ZnO are not detected in conducting Tokyo Denpa ZnO samples, but they may be traps that pin the Fermi level in the more compensated high-resistivity samples.  相似文献   

6.
The Seebeck coefficient, electrical resistivity, and thermal conductivity of Zr3Mn4Si6 and TiMnSi2 were studied. The crystal lattices of these compounds contain relatively large open spaces, and, therefore, they have fairly low thermal conductivities (8.26 Wm−1 K−1 and 6.63 Wm−1 K−1, respectively) at room temperature. Their dimensionless figures of merit ZT were found to be 1.92 × 10−3 (at 1200 K) and 2.76 × 10−3 (at 900 K), respectively. The good electrical conductivities and low Seebeck coefficients might possibly be due to the fact that the distance between silicon atoms in these compounds is shorter than that in pure semiconductive silicon.  相似文献   

7.
The development of a constitutive model for predicting the thermal-mechanical fatigue (TMF) of 95.5Sn-3.9Ag-0.6Cu (wt.%) Pb-free solder interconnects requires the measurement of time-independent mechanical and physical properties. Yield stress was measured over the temperature range of −25–160°C using strain rates of 4.2 × 10−5 s−1 and 8.3 × 10−4 s−1. The yield-stress values ranged from approximately 40 MPa at −25°C to 10 MPa at 160°C for tests performed at 4.2 × 10−5 s−1. The faster strain rate and specimen aging had a limited impact on the yield stress. The true stress/true strain curves indicated that dynamic-recovery and dynamic-recrystallization processes took place in as-cast samples exposed to temperatures of 125°C and 160°C, respectively, while tested at a strain rate of 4.2 × 10−5 s−1. Aging the sample prior to testing, as well as a faster strain rate, mitigated both phenomena. Dynamic Young’s modulus values ranged from 55 GPa at −50°C to 35 GPa at 200°C, while the coefficient of thermal expansion (CTE) increased from approximately 12 × 10−6°C−1 to 24 × 10−6°C−1 for the same temperature range. The aging treatment had little effect on either Young’s modulus or the CTE.  相似文献   

8.
The rate-dependent mechanical properties of Sn3.8Ag0.7Cu (SAC387) Pb-free alloy and Sn-Pb eutectic alloy were investigated in this study under pure shearing and biaxial stress conditions with thin-walled specimens using a servo-controlled tension-torsion material testing system. The pure shearing tests were conducted at strain rates between 6.7 × 10−7 and 1.3 × 10−1/sec. In addition, axial tensile stresses were superimposed onto the shearing samples to examine the effects of biaxial stress conditions on the yielding and on post-yielding plastic flow of the solder alloys. Strain hardening is observed for the Pb-free alloy at all the tested strain rates, while strain softening happens with the Sn-Pb eutectic solder at low strain rates. Special tests were also conducted for sudden strain-rates changes and stress relaxation for the purpose to develop a viscoplastic model to simulate time-dependent multiaxial deformation and to assess damage and fatigue life of general solder interconnections.  相似文献   

9.
Pd-Ge based ohmic contact to n-GaAs with a TiW diffusion barrier was investigated. Electrical analysis as well as Auger electron spectroscopy and the scanning electron microscopy were used to study the contact after it was subjected to different furnace and rapid thermal annealing and different aging steps. All analyses show that TiW can act as a good barrier metal for the Au/Ge/Pd/n-GaAs contact system. A value of 1.45 × 10−6 Ω-cm2 for the specific contact resistance was obtained for the Au/TiW/Ge/Pd/n-GaAs contact after it was rapid thermally annealed at 425°C for 90 s. It can withstand a thermal aging at 350°C for 40 h with its ρc increasing to 2.94 × 10−6Ω-cm2 and for an aging at 410°C for 40 h with its ρc increasing to 1.38 × 10−5 Ω-cm2.  相似文献   

10.
The growth by liquid-phase epitaxy of InAs1−x Sb x (x = 0.08-0.16) on GaSb was accomplished by using melts of constant arsenic concentration x As L = 0.014. The study of the influence of the degree of supercooling ΔT on the crystal growth was investigated. The strong tendency of the In-As-Sb liquid to dissolve the GaSb substrate was resolved by using high ΔT (20-30° C) for layers having a positive lattice-mismatch Δa/a more than 1.5 x 10−3. As positive lattice-mismatch becomes smaller, a larger supersaturation is required to control the substrate dissolution. But owing to the bulk nucleation which restricts the supercooling ΔT at values near 30° C, the growth of epitaxial layers with small lattice-mismatch (until - 5 × 10−4) was achieved only from time to time. It was observed that an increase of ΔT increases the concentration of antimony in the epilayers and hence leads to the lattice-mismatch. The dislocation etch pit density was found to be only dependent on the lattice-mismatch. The thickness of the grown layers is proportional to ΔT xt 1/2 with a factorK = 0.025 μm . °C−2 . s−1/2  相似文献   

11.
Halogen lamp rapid thermal annealing was used to activate 100 keV Si and 50 keV Be implants in In0.53Ga0.47As for doses ranging between 5 × 1012−4 × 1014 cm−2. Anneals were performed at different temperatures and time durations. Close to one hundred percent activation was obtained for the 4.1 × 1013 cm−2 Si-implant, using an 850° C/5 s anneal. Si in-diffusion was not observed for the rapid thermal annealing temperatures and times used in this study. For the 5 × 1013 cm−2 Be-implant, a maximum activation of 56% was measured. Be-implant depth profiles matched closely with gaussian profiles predicted by LSS theory for the 800° C/5 s anneals. Peak carrier concentrations of 1.7 × 1019 and 4 × 1018 cm−3 were achieved for the 4 × 1014 cm−2 Si and Be implants, respectively. For comparison, furnace anneals were also performed for all doses.  相似文献   

12.
Carrier removal rate (V d ) in p-6H-SiC in its irradiation with 8-MeV protons has been studied. The p-6H-SiC samples were produced by sublimation in vacuum. V d was determined by analysis of capacitance-voltage characteristics and from results of Hall effect measurements. It was found that complete compensation of samples with initial value of N a N d ≈ 1.5 × 1018 cm−3 occurs at an irradiation dose of ∼1.1 × 1016 cm−2. In this case, the carrier removal rate was ∼130 cm−1.  相似文献   

13.
We report on the optical and magnetic properties of the magnetic semiconductor Zn(V)O fabricated by implantation of 195 keV 51V+ ions into bulk ZnO:Al grown by a hydrothermal technique. Two sets of the samples, containing N d N a ∼ 1015 cm−3 and 1018 cm−3, were implanted to doses of 1 × 1015 cm−2, 3 × 1015 cm−2, and 1 × 1016 cm−2. The ion implantation was performed at 573 K. To remove irradiation-induced defects, the samples were annealed in air at 1073 K. Photoluminescence (PL) measurements of Zn(V)O films were carried out at temperatures from 10 K to 300 K. The effects of implantation dose and free carrier concentration on the magnetic properties of Zn(V)O were studied using a superconducting quantum interference device magnetometer. Ferromagnetism has been observed in annealed highly conductive samples implanted to 1 × 1016 cm−2. The PL studies of ZnO bulk samples implanted with V+ have revealed that thermal annealing at 1073 K restores to a large extent the optical quality of the material. A new emission line centered at 3.307 eV has been found in the PL spectrum of the highly conductive samples implanted to the dose of 1 × 1016 cm−2, which is most probably due to complexes involving V ions.  相似文献   

14.
Hg1−x Cd x Te samples of x ~ 0.3 (in the midwave infrared, or MWIR, spectral band) were prepared by molecular beam epitaxy (MBE) for fabrication into 30-μm-pitch, 256 × 256, front-side-illuminated, high-density vertically-integrated photodiode (HDVIP) focal plane arrays (FPAs). These MBE Hg1−x Cd x Te samples were grown on CdZnTe(211) substrates prepared in this laboratory; they were ~10-μm thick and were doped with indium to ~5 × 1014 cm−3. Standard HDVIP process flow was employed for array fabrication. Excellent array performance data were obtained from these MWIR arrays with MBE HgCdTe material. The noise-equivalent differential flux (NEΔΦ) operability of the best array is 99.76%, comparable to the best array obtained from liquid-phase epitaxy (LPE) material prepared in this laboratory.  相似文献   

15.
Wet etch rates at 25°C for Zn0.9Mg0.1O grown on sapphire substrates by pulsed laser deposition (PLD) were in the range 300–1100 nm · min−1 with HCl/H2O (5×10−3−2×10−2 M) and 120–300 nm · min−1 with H3PO4/H2O (5×10−3−2×10−2 M). Both of these dilute mixtures exhibited diffusion-limited etching, with thermal activation energies of 2–3 kCal · mol−1. By sharp contrast, the etch rates for ZnO also grown on sapphire by PLD were much slower in similar solutions, with rates of 1.2–50 nm · min−1 in HCl/H2O (0.01–1.2 M) and 12–54 nm · min−1 in H3PO4/H2O (0.02–0.15 M). The etching was reaction limited over the temperature range 25–75°C, with activation energies close to 6 kCal · mol−1. The resulting selectivity of Zn0.9Mg0.1O over ZnO can be a high as ∼400 with HCl and ∼30 with H3PO4.  相似文献   

16.
This paper presents transport measurements on both vacancy doped and gold doped Hg0.7Cd0.3Te p-type epilayers grown by liquid phase epitaxy (LPE), with NA=2×1016 cm−3, in which a thin 2 μm surface layer has been converted to n-type by a short reactive ion etching (RIE) process. Hall and resistivity measurements were performed on the n-on-p structures in van der Pauw configuration for the temperature range from 30 K to 400 K and magnetic field range up to 12 T. The experimental Hall coefficient and resistivity data has been analyzed using the quantitative mobility spectrum analysis procedure to extract the transport properties of each individual carrier contributing to the total conduction process. In both samples three distinct carrier species have been identified. For 77 K, the individual carrier species exhibited the following properties for the vacancy and Au-doped samples, respectively, holes associated with the unconverted p-type epilayer with p ≈ 2 × 1016 cm−3, μ ≈ 350 cm2V−1s−1, and p ≈ 6 × 1015 cm−3, μ ≈ 400 cm2V−1s−1; bulk electrons associated with the RIE converted region with n ≈ 3 × 1015cm−3, μ ≈ 4 × 104 cm2V−1s−1, and n ≈ 1.5 × 1015 cm−3, μ ≈ 6 × 104 cm2V−1s−1; and surface electrons (2D concentration) n ≈ 9 × 1012 cm−2 and n ≈ 1 × 1013 cm−2, with mobility in the range 1.5 × 103 cm2V−1s−1 to 1.5 × 104 cm2V−1s−1 in both samples. The high mobility of bulk electrons in the RIE converted n-layer indicates that a diffusion process rather than damage induced conversion is responsible for the p-to-n conversion deep in the bulk. On the other hand, these results indicate that the surface electron mobility is affected by RIE induced damage in a very thin layer at the HgCdTe surface.  相似文献   

17.
In order to examine the electrical and physical properties of Al2O3 layers with dual thickness on a chip, Pt gate/Al2O3 with dual thickness/p-type Si (100) samples were fabricated using atomic-layer deposition, separation photolithography, and 100:1 HF wet etching to remove the first Al2O3 layer. Dual metal-oxide-semiconductor (MOS) capacitors with thin (physical thickness, ∼4.5 nm, equivalent oxide thicknesses (EOT): 2.8 nm) and thick (physical thickness, ∼8.2 nm, EOT: 4.3 nm) Al2O3 layers showed a good leakage current density of −5.4×10−6 A/cm2 and −2.5×10−9 A/cm2 at −1 V, respectively; good reliability characteristics as a result of the good surface roughness; low capacitance versus voltage measurements (C-V) hysteresis; and a good interface state density (∼7×1010 cm−2eV−1 near the midgap) as a result of pre-rapid thermal annealing (pre-RTA) after depositing the Al2O3 layer compared with the single MOS capacitors without the pre-RTA. These results suggest that dual Al2O3 layers using the dual gate oxide (DGOX) process can be used for the simultaneous integration of the low power transistors with a thin Al2O3 layer and high reliability regions with a thick Al2O3 layer.  相似文献   

18.
We have demonstrated a high-speed InP/lnGaAs heterojunction bipolar transistor with nonalloyed TiPtAu contacts on n+-InP emitter and collector contacting layers. The use of SiBr4 as a silicon doping source enabled the formation of low resistance (pc <2 × 10−6Ω. cm2), nonalloyed TiPtAu contacts to the heavily doped (n = 2 × 1019 cm−3) InP contacting layers. A device with a 3 × 10 Μm2 emitter contact exhibited excellent dc characteristics and had ƒT = ƒmax = 107 GHz. Emitter and collector resistances are compared to a device with InGaAs contacting layers.  相似文献   

19.
The thermal stability of the Cu/Cr/Ge/Pd/n+-GaAs contact structure was evaluated. In this structure, a thin 40 nm layer of chromium was deposited as a diffusion barrier to block copper diffusion into GaAs. After thermal annealing at 350°C, the specific contact resistance of the copper-based ohmic contact Cu/Cr/Ge/Pd was measured to be (5.1 ± 0.6) × 10−7 Ω cm2. Diffusion behaviors of these films at different annealing temperatures were characterized by metal sheet resistance, X-ray diffraction data, Auger electron spectroscopy, and transmission electron microscopy. The Cu/Cr/Ge/Pd contact structure was very stable after 350°C annealing. However, after 400°C annealing, the reaction of copper with the underlying layers started to occur and formed Cu3Ga, Cu3As, Cu9Ga4, and Ge3Cu phases due to interfacial instability and copper diffusion.  相似文献   

20.
Thin-film Bi2Te3- and Sb2Te3-based superlattice (SL) thermoelectric (TE) devices are an enabling technology for high-power and low-temperature applications, which include low-noise amplifier cooling, electronics hot-spot cooling, radio frequency (RF) amplifier thermal management, and direct sensor cooling. Bulk TE devices, which can pump heat loads on the order of 10 W/cm2, are not suitable in these applications due to their large size and low heat pumping capacity. Recently, we have demonstrated an external maximum temperature difference, ΔT max, as high as 58 K in an SL thin-film pn couple. This state-of-the-art couple exhibited a cold-side minimum temperature, T cmin, of −30.9°C. We regularly attain ΔT max values in excess of 53 K, in spite of the many significant electrical and thermal parasitics that are unique to thin-film devices. These measurements do not use any complex thermal management at the heat sink to remove the heat flux from the TE device’s hot side. We describe here multistage SL cooling technologies currently being developed at RTI that can provide useful microcooling cold-side temperatures of 200 K. This effort includes a three-stage module employing independently powered stages which produced a ΔT max of 101.6 K with a T cmin of −75°C, as well as a novel two-wire three-stage SL cascade which demonstrated a T cmin of −46°C and a ΔT max of nearly 74 K. These RTI modules are only 2.5 mm thick, significantly thinner than a similar commercial three-stage module (5.3 mm thick) that produces a ΔT max of 96 K. In addition, TE coolers fabricated from these thin-film SL materials perform significantly better than the extrapolated performance of similar thickness bulk alloy materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号