首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
采用共沉淀法和高温固相烧结相结合,合成了锂离子电池层状LiNi1/3Co1/3Mn1/3O2正极材料。采用ICP-AES元素分析方法、XRD和SEM对LiNi1/3Co1/3Mn1/3O2正极材料的成分、结构和形貌进行了表征。SEM测试结果表明,LiNi1/3Co1/3Mn1/3O2的形貌近似为球形,且颗粒分布均匀。并对其进行了充放电性能测试,结果表明:LiNi1/3Co1/3Mn1/3O2在25℃、2.5~4.6 V、0.1 C倍率下,首次放电容量达189.32 mAh.g-1(锂为负极),C/LiNi1/3Co1/3Mn1/3O2在1 C、2.75~4.2 V下,初始放电比容量为145.5 mAh/g,循环100次后,容量保持率为98.41%。是一种有发展前景的锂离子电池正极材料。  相似文献   

2.
通过浸渍法在正极材料LiNi1/3Co1/3Mn1/3O2的表面包覆MgF2,通过XRD、SEM、交流阻抗(EIS)分析、充放电测试研究了不同量MgF2包覆对LiNi1/3Co1/3Mn1/3O2正极材料的结构与电化学性能的影响。结果表明,MgF2以非晶态形式包覆于LiNi1/3Co1/3Mn1/3O2材料颗粒的表面,当包覆量为3%(物质的量分数,下同)时,三元正极材料具有优良的电化学性能,在3.0~4.6 V充放电范围内0.1C充放电倍率下,首次放电比容量为196.3 mA·h/g,1C循环50次后容量保持率为95.7%,55 ℃高温下1C循环50次后容量保持率为93.3%。  相似文献   

3.
分别以纳米氧化铝、氢氧化铝及异丙醇铝为原料,采用液相浸渍法对LiNi1/3Co1/3Mn1/3O2材料进行氧化铝包覆,考察不同包覆源在LiNi1/3Co1/3Mn1/3O2材料表面进行氧化铝包覆后对材料电化学性能的影响。SEM及XRD结果显示,产物为层状α-NaFeO2结构,氧化铝均匀包覆在LiNi1/3Co1/3Mn1/3O2材料表面。充放电性能测试结果表明,在3种铝源中,以异丙醇铝为包覆源的材料性能最佳:在3.0~4.6 V的电压下,0.1 C倍率下首次放电比容量为196.1 mA·h/g, 1 C下循环50周后容量保持率为95.6%。  相似文献   

4.
LiNi1/3Co1/3Mn1/3O2作为一种新型的锂离子电池正极材料,其理论容量高达278mAh.g^-1,具有a—NaFeO2型层状结构,制备方法主要高温固相合成法、共沉淀法、流变相反应法、溶胶-凝胶法等,文章对制备方法进行了重点沦述,讨论了相应的电化学性能、结构特征和目前存在的问题,并对层状LiNi1/3Co1/3Mn1/3O2正极材料的发展进行了展望。  相似文献   

5.
层状结构材料LiNi1/3Co1/3Mn1/3O2具有高比容量、高循环性能、低成本和环保等优点,有望取代LiCoO2成为新一代锂离子电池正极材料。在介绍LiNi1/3Co1/3Mn1/3O2的结构特点和电化学反应特性的基础上,对其主要合成方法进行了详细评述,总结了该正极材料的阴阳离子掺杂、复合离子掺杂以及表面包覆改性等技术,指出国内外目前锂离子电池材料研究中存在的问题和未来的发展方向。  相似文献   

6.
综述了Al2O3包覆LiNi(1/3)Co(1/3)Mn(1/3)O2锂离子电池正极材料的研究现状与进展,并评述了其制备方法和包覆改性;讨论了包覆改善该正极材料性能的机理;提出了这种正极材料的研发过程中的一些问题并对其未来的发展前景作了展望。  相似文献   

7.
锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2具有比商业化正极材料——LiCoO2更低廉的成本、更低的毒性、更好的热稳定性,近年来受到广大科研工作者的关注。主要介绍了Li Ni1/3Co1/3Mn1/3O2正极材料的合成改性方法及其近年来在电化学性能方面所取得的成果和进展,并简要概括了该材料结构和发展趋势。不断提高Li Ni1/3Co1/3Mn1/3O2正极材料的振实密度以及电化学性能特别是其在高倍率充放电条件下的循环性能将成为相关科研工作者的研究重点。  相似文献   

8.
讨论了焙烧温度对LiCo1/3Ni1/3Mn1/3O2的共沉淀法合成过程的影响,结合XRD、SEM、振实密度分析和充放电测试等手段获得了共沉淀法制备LiCo1/3Ni1/3Mn1/3O2的最佳合成温度。获得了共沉淀法制备LiCo1/3Ni1/3Mn1/3O2的最佳焙烧温度为900℃,在上述最佳焙烧温度条件下合成的正极材料具有优异的电化学性能。  相似文献   

9.
采用碳酸盐共沉淀法制备Li[Ni1/3Co1/3Mn1/3]O2。研究了前驱体合成温度、时间和焙烧温度、焙烧时间对材料结构和电化学性能的影响。测试结果表明,合成温度为40℃,时间30 h所得前驱体的振实密度和电化学性能较好。XRD测试结果表明,不同焙烧温度下得到的Li[Ni1/3Co1/3Mn1/3]O2均具有α-NaFeO2型层状结构。其中800℃下焙烧15 h得到的样品具有较好的层状结构和较低的阳离子混排程度。样品在2.8~4.3 V电压范围内,0.2 C放电倍率下的首次放电比容量最高可达159.1 mAh·g-1,循环50次后容量保持率为95.7%。  相似文献   

10.
采用NH3-NaOH共沉淀法合成了L[Ni1/3Co1/3Mn1/3]O2正极材料,通过改变NH3·H2O浓度及加料方式研究材料的电化学性能.采用XRD、SEM对晶体的结构和形貌作表征.将正极材料Li[Ni1/3Co1/3Mn1/3]O2制成电极极片,组装成电池进行测试.分析测试结果表明,合成的极材料Li[Ni1/3Co1/3Mn1/3]O2具有典型的α-NaFeO2结构,粒径分布较好,呈类球形.  相似文献   

11.
采用固相法和沉淀法合成了锂离子电池正极材料LiCo1/3Ni1/3Mn1/3O2探讨了合成温度、不同合成方法对材料的电化学性能的影响。利用充放电测试、循环伏安测试方法对合成的LiCo1/3Ni1/3Mn1/3O2进行了表征。结果表明,固相法900℃煅烧合成的材料电化学性能较好,沉淀法合成的材料电化学性能最好,以10.0mA/g的电流充放电,首次放电比容量为576.0C/g,循环50次后放电比容量仍保持501.5C/g。以100.0mA/g的大电流放电,放电比容量达到430.2C/g。  相似文献   

12.
何江琴 《广东化工》2011,38(2):36-38,65
微波烧结是利用微波电磁场的作用,能量通过分子与偶极子之间的相互作用转化为热量,而均匀快速地向材料的其他部位扩散。文章采用微波烧结法合成LiCo1/3Mn1/3Ni1/3O2,通过XRD、SEM、电化学性能测试等表征手段获得了材料的微波烧结工艺条件。研究表明,将前驱体先在马弗炉中500℃下焙烧6h,再使用微波炉烧结一定时间,可以获得较好的电化学性能,50次循环后容量衰减仅为9.96%。  相似文献   

13.
Solid solutions (1-x)PbMg1/3Nb2/3O3 + xPbCd1/3Nb2/3O3 with x = 0-0.30 are investigated with purpose to work out a capacitor ceramics with good dielectric properties and low sintering temperature. It is found that the perovskite phase forms at sintering near to 980°C and begins to decompose at higher temperatures. When x grows from 0 to 0.30, the Curie temperature linearly grows from -10°C to +25°C, the dielectric permittivity εm in the Curie point TC decreases from 18000 to 6800 and the phase transition becomes more diffused. The dielectric permittivity at room temperature is rather high and the temperature stability is improved. The system is of interest, because it can serve as a base for working out some ceramic materials for capacitors with low sintering temperature, which needs of no special atmosphere at burning.  相似文献   

14.
经过几十年的发展,锂离子电池由于其在能量密度、循环寿命等方面的优势,在小心电子产品上获得了广泛的应用。在目前的商业化锂离子电池产业中,应用最广泛的正极材料是由Good enough等开发的LiCoO2材料,但是其有毒、热稳定性差等特点,导致其难以得到进一步的应用。因此,通过开发他们的复合材料成为了锂离子电池正极材料开发的主要研究方向之一。论文主要对LiNi1/3Co1/3Mn1/3O2材料的热聚合法制备及性能表征进行了一定的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号