首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We propose a procedure for determination of metal ions, viz., Pb(II), Co(II), Cu(II), Fe(III), and Zn(II), in red and rice wines by acid-free open-vessel wet digestion (AFOVWD) and poly(amidoamine) dendrimer generation 0.5 (PAMAM G 0.5)-enhanced capillary electrophoresis (CE). During sample preparation, the wines were filtrated and then digested in the presence of H2O2, without addition of acid. Therefore, the digested sample solution had low conductivity that would offer the subsequent CE analysis efficient separation and sensitive detection. Moreover, it was found that presence of 2 mM PAMAM G 0.5 in the buffer of 12 mM H3BO3, 7 mM Na2B4O7 and 0.1 mM PAR, at pH 8.8, improved the separation efficiency of all the ions, allowing baseline resolution of the initially overlapped Cu(II) and Fe(III). Importantly, it lowered the detection limit (S/N?=?3) of Pb(II) by 5.5-fold, to 128 μg/L, enabling quantitative determination of Pb(II), in addition to Co(II), Cu(II), Fe(III), and Zn(II), in red and rice wines. The results by AFOVWD-CE agreed well with that obtained by inductively coupled plasma–atomic emission spectrometry.  相似文献   

2.
The Japanese common squid wastes contained high concentration of metal ions such as 31.7 ppm Cd(II), 264.0 ppm Cu(II), and 140.0 ppm Zn(II). The use of sub- and supercritical water treatment has been investigated as a new method of recovering heavy metals from squid wastes. The reactions were carried out in the temperature range of 443-653 K, a pressure range of 0.792-30 MPa, and reaction times of 1-40 min. The wastes were decomposed into soluble proteins, organic acids, amino acids, and so on in the aqueous phase, and the fat and oil were extracted by sub- and supercritical water. The maximum yields on concentration of Cd(II), Cu(II), and Zn(II) in the solid, fat, and oil phases were found at 653, 573, and 513-573 K, respectively. The aqueous phase showed the lowest concentration of the metal ions (0.05-0.5 ppm). The distribution coefficient of metal ions in the fat, solid, and oil phases to aqueous phase were examined and found highest in the fat phase (max. 48 000). The solid phase (max. 39,000) and oil phase (max. 245) showed the second and third highest. Moreover, the fat and oil phases produced during this method act as chelating agents to catch metal ions with an order of recovery of Cu2+ > Zn2+ > Cd2+ and Zn2+ > Cu2+ > Cd2+, respectively.  相似文献   

3.
There is a growing concern about the effect of palladium on human health because of the toxicity and increasing occurrence of palladium as a result of its extensive use in automotive catalytic converters. Development of reliable analytical methodologies for the determination of palladium in environmental materials is of great importance for critical evaluation of the possible risks for human health. In this work, a displacement solid-phase extraction technique was developed and online coupled to electrothermal atomic absorption spectrometry (ETAAS) for selective and sensitive determination of trace palladium in environmental samples without need of any special selective complexing agents, selective sorbents, and masking agents. The developed methodology involved the online formation of copper pyrrolidine dithiocarbamate (Cu-PDC), and the resultant Cu-PDC was extracted onto a microcolumn packed with the sorbent from a cigarette filter. Trace Pd(II) was selectively preconcentrated through loading the sample solution onto the microcolumn by online displacement reaction between Pd(II) and the extracted Cu-PDC on the microcolumn. The retained analyte was subsequently eluted with 40 microL of ethanol for online ETAAS determination. Interferences from coexisting heavy metal ions with lower stability of their PDC complexes relative to Cu-PDC were minimized. The tolerable concentrations of Cd-(II), Fe(III), Co(II), Mn(II), Cr(III), and Zn(II) were up to 2, 6, 40, 2, 1.5, and at least 100 mg L(-1), respectively. Compared with conventional solid-phase extraction methodology, the developed displacement solid-phase extraction protocol gave 2-4 orders of magnitude improvement in the maximum tolerable concentrations of coexisting heavy metal ions. With the consumption of only 2.8 mL of sample solution, an enhancement factor of 52 and a detection limit (3sigma) of 18 ng L(-1) were achieved at a sample throughput of 30 samples h(-1). The precision (RSD, n = 13) was 2.5% at the 1 microg L(-1) level. The present methodology was successfully applied to selective determination of trace palladium in local road dusts and roadside soils.  相似文献   

4.
Mercury electrodes have been traditionally employed for achieving high reproducibility and sensitivity of the stripping technique. However, new alternative electrode materials are highly desired because of the toxicity of mercury. Bismuth is an electrode material characterized by its low toxicity and its ability to form alloys with some metals such as cadmium, lead and zinc, allowing their preconcentration at the electrode surface. In this work, we reported the simultaneous determination of Pb(II), Cd(II) and Zn(II) at the low μg/l concentration levels by differential pulse anodic stripping voltammetry (DPASV) on a Nafion-coated bismuth film electrode (NCBFE) plated in situ, and investigated the application of NCBFE to heavy metals analysis in vegetable samples. The analytical performance of NCBFE was evaluated for simultaneous determination of Pb(II), Cd(II) and Zn(II) in non-deaerated solution, with the limits of determination of 0.30 μg/l for Zn, 0.17 μg/l for Cd and Pb at a preconcentration time of 180 s. High reproducibility for NCBFE was indicated from the relative standard deviations of 2.4% for Pb, 2.0% for Cd and 3.4% for Zn at the 15 μg/l level (n = 15). The NCBFE was successfully applied to determine Pb and Cd in vegetable samples, and the results were in agreement with those of graphite furnace atomic absorption spectrometry (GFAAS).  相似文献   

5.
重金属是食品和环境中的一类剧毒污染物,易引起食源性疾病,对人体造成不可逆损伤。传统的检测方法耗时长、成本高,因此迫切需要开发食品中重金属的快速检测技术。基于纳米材料的电化学适配体传感器具有快速、高灵敏度、特异性强等优点,在重金属快速检测领域具有广阔的应用前景。本文总结了金属纳米材料(如金纳米粒子)、金属氧化物(Fe3O4纳米颗粒)、碳纳米材料(如碳纳米管、石墨烯)等材料的性质,并对基于纳米材料的电化学适配体传感器在重金属(主要是Pb2+、Hg2+、As3+、Cd2+)检测中的应用进行了综述,以期为重金属检测相关研究提供参考和启发。  相似文献   

6.
We present a method to calculate critical limits of cationic heavy metals accounting for variations in soil chemistry. We assume the free metal ion concentration (Mfree) to be the most appropriate indicator of toxicity, combined with a protective effect of soil cations (e.g., H+, Ca2+). Because soil metal cations tend to covary with pH, the concentration of Mfree exerting a given level of toxic effect (Mfree,toxic) can be expressed as a function of pH alone. We use linear regression equations to derive Mfree,toxic in toxicity experiments from soil pH, organic matter content, and endpoint soil metal. Chronic toxicity data from the literature, for plants, invertebrates, microbial processes, and fungi are interpreted in terms of an average log Mfree,toxic together with distributions of species sensitivity. This leads to critical limit functions to protect 95% of species, of the form log Mfree,CRIT = (pH + gamma. Appreciable effects of soil pH upon log Mfree,CRIT are found, with alpha = -1.21 (Cu), -0.34 (Zn), -0.43 (Cd), and -0.83 (Pb). Critical limit functions in terms of the geochemically active soil metal (Msoil,CRIT), that pool of metal which controls the free ion concentration, have also been derived, with soil pH and organic matter content as variables. The pH effect on Msoil,CRIT is relatively small, with slopes of 0.05 (Cu), 0.19 (Zn), 0.16 (Cd), and 0.20 (Pb), since the effect of pH on Mfree,CRIT is countered by the variation of Mfree with pH.  相似文献   

7.
Regulation of metallothionein gene expression   总被引:11,自引:0,他引:11  
  相似文献   

8.
This paper describes the synthesis and application of a novel magnetic metal–organic framework (MOF) [(Fe3O4-benzoyl isothiocyanate)/Cu3(benzene-1,3,5-tricarboxylate)2] to pre-concentrate trace amounts of Cd(II), Pb(II), Zn(II) and Cr(III) ions and their determination by flame atomic absorption spectrometry. A Box–Behnken design was used to find the parameters affecting the pre-concentration procedure through response surface methodology. Three factors including uptake time, amount of the magnetic sorbent and pH of the sample were selected as affecting factors in the sorption step, and four factors including type, volume and concentration of the eluent as well as the elution time were selected in the elution step for the optimisation study. The opted values were 30 mg, 10.1 min, 5.9, EDTA, 4.0 ml, 0.57 mol l–1 EDTA solution and 13.0 min for the amount of the magnetic sorbent, uptake time, pH of the sample, type, volume, concentration of the eluent, and elution time, respectively. The limits of detection (LODs) were 0.12, 0.7, 0.16, and 0.4 ng ml?1 for Cd(II), Pb(II), Zn(II) and Cr(III) ions, respectively. The relative standard deviations (RSDs) of the method were less than 7.2% for five separate batch experiments for the determination of 30 μg l?1 of Cd(II), Pb(II), Zn(II) and Cr(III) ions. The sorption capacity of the [(Fe3O4-benzoyl isothiocyanate)/MOF] was 175 mg g?1 for Cd(II), 168 mg g?1 for Pb(II), 210 mg g?1 for Zn(II) and 196 mg g?1 for Cr(III). It was found that the magnetic MOF nanocomposite demonstrated a higher capacity compared with Fe3O4-benzoyl isothiocyanate. Finally, the magnetic MOF nanocomposite was successfully applied to the rapid extraction of trace amounts of the heavy metal ions from vegetable samples.  相似文献   

9.
The toxic effects of mercury are well-known. To establish sources of mercury contamination and to evaluate levels of mercury pollution, sensitive, selective, and accurate analytical methods with excellent reproducibility are required. We have developed a novel methodology for the determination of trace mercury in environmental and foods samples by online coupling of flow injection (FI) displacement sorption preconcentration in a knotted reactor (KR) to electrothermal atomic absorption spectrometry (ETAAS). The developed methodology involved the online formation of copper pyrrolidine dithiocarbamate (Cu-PDC), presorption of the resulting Cu-PDC onto the inner walls of the KR, and selective retention of the analyte Hg(ll) onto the inner walls of the KR through online displacement reaction between Hg(ll) and the presorbed Cu-PDC. The retained analyte was subsequently eluted by 50 microL of ethanol and online detected by ETAAS. Interferences from coexisting heavy metal ions with lower stability of their APDC complexes relative to Cu- PDC were minimized without the need of any masking reagents. The tolerable concentrations of Cu(II), Cd(II), Fe(III), Ni(III), and Zn(II) were up to 12, 20, 16, 20, and 60 mg L(-1), respectively. No additional chemical modifiers for the stabilization of mercury were required in the present system owing to the stability of Hg-PDC at the drying stage, and no pyrolysis stage was necessary due to the effective removal of the matrices. With consumption of 2.5 mL of sample solution, an enhancement factor of 91 was obtained in comparison with direct injection of 50 microL of aqueous solution. The relative detection limit (3s) was 6.2 ng L(-1), corresponding to an absolute detection limit of 15.5 pg. The precision (RSD, n = 13) was 1.1% at the 2 microg L(-1) level. The method was successfully applied to the determination of mercury in several certified environmental and foods reference materials and locally collected water samples.  相似文献   

10.
The long-term impacts of chronic metal exposure for aquatic biota are not well understood, partly due to a lack of understanding of metal speciation within tissues. The objective of this study was to determine hepatic Zn speciation of rainbow trout (Oncorhnychus mykiss) exposed to Zn-enriched water in relation to unexposed (control) fish,through direct analysis of freeze-dried liver samples using synchrotron X-ray absorption spectroscopy (XAS). Juvenile rainbow trout (n=30) were exposed to Zn in a two-step process, 200 microg L(-1) for 14 days, followed by 370 microg L(-1) for 23 days. Thirty other trout were grown in a control treatment (10 microg Zn L(-1)). At the end of the experiment, three liver samples per treatment were collected, freeze-dried, ground, and mixed homogeneously. Although Zn concentration was higher in the Zn-exposed livers than in the control livers (22.32 vs 13.73 mg kg(-1), respectively; p < 0.05), Zn speciation was similar for both groups. Extended X-ray absorption fine structure (EXAFS) spectroscopy indicated that Zn was coordinated to 4 sulfur atoms with an average Zn-S bond distance of 2.31 +/- 0.02 A. Sulfur K-XANES analysis confirmed that S was predominantly in reduced organic form analogous to cysteine. Our results are consistent with previous evidence for Zn(II) bonding to S in metallothionein proteins. These results suggest that the mechanisms for dealing with the extra load of bioaccumulated Zn in high exposure conditions were the same as in the control group.  相似文献   

11.
A novel bioassaythat uses visual inspection of reproduction of the aquatic green macroalga Ulva has been developed for testing toxic chemicals. The method employs a technique to quantify percentage reproduction based on thallus color change during the progression of reproduction. The validity of visual inspection as a reliable method was supported by a high test score (80.4) from a test of the ability of 97 first year university students with no biology background to evaluate reproduction by visual observation after 30 min training. The sensitivity of the method was assessed using a reference toxicant (sodium dodecyl sulfate; SDS; EC50 = 7.1 mg x L(-1)), heavy metals Cu (0.063 mg x L(-1)), Cd (0.217 mg x L(-1, Pb (0.840 mg x L(-1)), Zn (0.966 mg x L(-1)), formalin (1.458 mg x L(-1)), diesel fuel (3.7 mL x L(-1)), and is shown to be similar or better than more established aquatic toxicity bioassays. Toxicity data obtained by the Ulva bioassay for elutriates of sludge collected from nine different locations were directly compared with the commercially available Microtox test. Ulva reproduction was significantly inhibited in all elutriates with the greatest and least toxic effects, estimated by toxicity units (TU) observed in elutriates from industrial waste (13.1 TU) and a filtration bed (4.8 TU), whereas values ranging from 1 to 4.5 TU were obtained from the Microtox test, confirming that the Ulva bioassay is more sensitive. Correlation analyses for EC50 data versus the concentrations of toxicants in the sludge indicated a significant relationship between toxicity and four heavy meals (Cd, Cu, Pb, Zn) for the Ulva bioassay but no such correlation was detected by the Microtox test. The new bioassay method is simple to use, easy to interpret, economical, and eco-relevant so would be a valuable addition to aquatic toxicity testing protocols for a wide range of toxicants. Moreover, since Ulva has a wide geographical distribution and species have similar reproductive processes, the test method has worldwide application.  相似文献   

12.
Two hundred fish samples were collected seasonally from November 2000 to December 2001 from the Tuzla Lagoon. Heavy metal (Cd, Pb, Cu, Zn, and Fe) concentrations were measured in the muscle, gill, liver and gonad of three fish species (Sparus aurata, Dicentrarchus labrax and Mugil cephalus). The concentrations of heavy metals were determined by using flame atomic absorption spectrophotometry (FLAAS) and graphite furnace atomic absorption spectrophotometry (GFAAS) after wet digestion method.  相似文献   

13.
Five tea clones of the Camellia assamica variety grown in Wushwush tea plantation farms, Ethiopia, were analyzed for their contents of essential, non-essential and toxic metals (K, Ca, Mg, Fe, Mn, Cu, Zn, Na, Cd and Pb) by atomic absorption flame emission spectroscopy. Both the tea leaves and the soils of the study farms showed similar accumulation patterns in their contents of the studied macronutrients. Among the macronutrient metals, K was the most abundant element in the tea leaves (17.7–24.8 mg/g) and the soils (7.14–9.73 mg/g). Mn was the predominant micronutrient heavy metal in the tea leaf tissues ranging between 501 and 1281 mg/kg. Level of Fe (29.6–100 mg/kg) in the leaf tissue was found to be the second most abundant micronutrient next to Mn whereas concentrations of Cu and Co were relatively lower both in the soil and tea samples. The toxic heavy metals Pb and Cd in the leaf tissues were present at levels too low to be detected by the analytical technique used in this study. The soils were found to be acidic (pH 5.04–5.49) with high organic matter (5.48–6.02%). Fe was the most abundant metal followed by Mn, Na and Zn in the soils. Unlike the tea leaves, the soils were found to contain traces of the toxic metal, Cd (0.02–1.10 mg/kg). The levels of most of the metals determined in this study compared well with those reported for tea leaves from some other parts of the world.  相似文献   

14.
本文利用Eu3+离子嵌入钨氧簇材料(化合物1)优异的发光特性,将其作为荧光探针材料,系统研究了其对水中重金属Cr3+离子的荧光检测性能。利用稳态瞬态荧光光谱仪对化合物1对水中Cr3+离子荧光检测的选择性、抗干扰能力、检出限等指标进行表征与分析。结果表明,化合物1的猝灭常数Kq为1.41×108 L·mol?1·s?1,远低于最大散射碰撞猝灭常数2.00×1010 L·mol?1·s?1,显示出化合物1对重金属Cr3+离子的快速灵敏的荧光猝灭响应。化合物1在同时含有不同阴、阳离子的待测液中的荧光检测结果显示其对水溶液中Cr3+离子的荧光检测具有较强的抗干扰能力。经计算获得化合物1对水溶液中Cr3+离子的检出限LOD为4.21×10?7 mol/L,显示出化合物1对水环境中的Cr3+离子具有很好的检出效果。本研究为水中重金属Cr3+离子的荧光检测提供一种灵敏、可靠的新方法。  相似文献   

15.
In aqueous environments, certain heavy metals are toxic even at very low concentrations. The main pathway of metal removal in the aquatic systems is via adsorption onto surfaces. These are desired processes that help decrease the dissolved fraction of metals in natural water. The presence of organic ligands as mono- and polyphosphonates may produce drastic changes in the mobility of the heavy metals. 1-Hydroxyethane-(1,1-diphosphonic acid) (HEDP) is a very strong chelating agent widely used in industrial applications. This study examines the effect of HEDP on the adsorption of Cu(II), Zn(II), and Cd(II) onto boehmite in nonstoichiometric conditions, with the HEDP concentration higher than the corresponding Me(II) cations. At high surface loading and low pH, HEDP removes Zn(II) and Cd(II) from solution to an appreciable extent. The data are modeled assuming an anionic-ternary complex formation. In the same conditions, Cu(II) adsorption is significantly suppressed at intermediate values of pH, and this behavior is linked to Cu-HEDP complex formation in solution. At low surface covering, the effects of HEDP on metal adsorption are either negligible or slight. This behavior suggests that both ligand and metal are mainly adsorbed in separate form. All experimental data indicate that no changes are observed in the pH edges for phosphonate adsorption. The surface constants to fit the experimental data were calculated by applying the 2-K model constant capacitance (CCM).  相似文献   

16.
为探究诺邓火腿红色素化学本质,采用75%丙酮溶液提取,结合C18固相萃取小柱进行分离纯化,通过紫外-可见光光谱(ultraviolet spectroscopy,UV-Vis)、荧光光谱、超高效液相色谱-串联质谱(ultra-high performance liquid chromatography-tandem mass spectrometry,UPLC-MS/MS)、傅里叶变换红外光谱(Fourier transform infrared,FTIR)和核磁共振(nuclear magnetic resonance,NMR)共同表征诺邓火腿红色素的化学结构。结果表明:在UV-Vis中416 nm处有1个强吸收峰,546 nm和584 nm处有2个弱对称吸收峰,符合金属卟啉特征;以420 nm激发,红色素在590 nm处有1个强荧光发射峰,644 nm处有1个弱荧光发射峰,与Zn-原卟啉IX(Zn protoporphyrin IX,ZnPP)标准品比对后高度重合,表明卟啉环中的金属离子是锌离子;在UPLC-MS/MS的正离子(m/z 625.177 9[M+...  相似文献   

17.
The abilities of different types of wood sawdust and wood originate materials for removing some toxic heavy metal ions from water were investigated. Sawdust of poplar, willow, fir, oak and black locust wood, pulp and Kraft lignin were used as adsorbents. The effects of contact time, pH, metal concentration and sawdust particle size on the removal of Cu(II) ions by poplar sawdust have been studied. Leaching from these adsorbents into water during adsorption was also investigated.  相似文献   

18.
A survey of selected heavy metal concentrations in Wisconsin dairy feeds   总被引:1,自引:0,他引:1  
Heavy metals such as zinc (Zn), copper (Cu), chromium (Cr), arsenic (As), cadmium (Cd), and lead (Pb) are potential bioaccumulative toxins of the dairy production system. The heavy metal content of dairy feeds, however, remains poorly documented, particularly in the United States. This survey determined the heavy metal content of 203 typical dairy ration components sampled from 54 dairy farms in Wisconsin. Lowest heavy metal concentrations were found in homegrown alfalfa (Medicago sativa L.) hay and haylage, and corn (Zea mays L.) grain and silage. Highest metal concentrations were found in purchased feeds, particularly mineral supplements, and to a lesser extent corn- or soybean-based concentrates. Zinc and Cu were found at the highest concentration in complete dairy (total mixed and aggregated component) rations and reflected the deliberate addition of these metals to meet animal nutrient requirements although more than half the farms fed Cu and Zn above US recommended levels. Concentrations of Cr, As, Cd, and Pb were present in much lower concentrations and decreased in the order Cr > As > Pb > Cd. No complete Wisconsin dairy ration contained heavy metal concentrations above US maximum acceptable concentrations and would be unlikely to induce any toxic effects in dairy cattle. Concentrations of Cd in complete dairy rations were closest to US maximum acceptable concentrations, suggesting the greatest potential long-term risk to exceed US maximum acceptable concentrations if whole farm levels of Cd were to increase in the future. With the exception of Pb, the main sources of Zn, Cu, Cr, As, and Cd in the complete dairy feed ration originated from imported feed. The continued importation of heavy metals in dairy feed is likely to be associated with accumulation of these metals in soils where manure is applied. Although the cycling of many heavy metals through the dairy food chain will be limited by factors such as a soil's cation exchange capacity, pH, salinity, and phytotoxicity of the metal, these may be less limiting for Cd. It is important that sources of Cd in the dairy system are identified and minimized to prevent problems associated with Cd accumulation in the dairy soil system arising over the long-term.  相似文献   

19.
Sawdust, an inexpensive material, has been utilized as an adsorbent for the removal of Zn(II)- and Cd(II)ions from aqueous solution. The effects of time of equilibrium, pH, temperatures and dosage of the adsorbent on the removal of Zn(II)- and Cd(II)ions have been studied. The equilibrium nature of Zn(II)- and Cd(II)ions adsorption at different temperatures (25–60 °C) has been studied. The percent adsorption of Zn(II)- and Cd(II)ions increased with an increase in pH, temperature and dosage of treated sawdust. The applicability of the Langmuir isotherm suggests the formation of monolayer coverage of Zn(II)- and Cd(II)ions at the surface of the adsorbent. The thermodynamic parameters like free energy, enthalpy and entropy changes for the adsorption of Zn(II)- and Cd(II)ions has also been computed and discussed. The heat of adsorption [ΔH=17.706 kJmole-1 for Zn(II) and ΔH=16.949 kJmole-1 for Cd(II)] implied that the adsorption was an endothermic adsorption. The sawdust was found to be a metal adsorbent as effective as activated carbon.  相似文献   

20.
BACKGROUND: This paper deals with the biosorption process as a method of enrichment of natural biomass of the edible microalga Spirulina sp. with microelement metal ions, which is of significance in terms of animal nutrition. The influence of the following process parameters was studied for the biosorption of Cr(III): pH and biomass concentration on kinetics and equilibrium of biosorption. The enrichment process were performed in single‐ and multi‐mineral systems for nutritionally significant minerals such as Cu(II), Mn(II), Co(II), Zn(II) and Cr(III) under the conditions that were determined for Cr(III). RESULTS: The best operational parameters for the process were selected as pH 5 and Cs 1 g L?1. The maximum biosorption capacity 71.2 mg g?1, 18.4 mg g?1, 83.9 mg g?1, 31. 8 mg g?1 and 26.5 mg g?1, were reached for Cu(II), Mn(II), Co(II), Zn(II) and Cr(III), respectively. To cover 100% of animal demand on microelements, 4.91 g of the preparation for laying hens and 9 g for swine of enriched microalgae in the single‐metal system should be added to 1 kg of fodder. In the multi‐metal system the competition between microelements was high enough to make it impossible to reach a suitable ratio between bound metal ions. CONCLUSIONS: Two methods of production of mineral feed additives were proposed: a single‐metal system and a multi‐metal system. Performing the biosorption process in the single‐metal system enabled the preparation of additives with the desired composition. Carrying out biosorption in the multi‐metal system is easier, technologically, but the ratio of bound microelements is difficult to predict. Copyright © 2009 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号