首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

For fetching day-to-day energy needs, current energy requirement majorly depends on fossil fuels. But ambiguous matter like abating petroleum products and expanding air pollution has enforced the experts to strive for another fuel which can be used as an alternative or reduce the applications of fossil fuels. Considering the issues, the main objective of the present study is to find the feasibility by using blends of rice bran oil biodiesel and diesel which are used as pilot fuels by blending 10% and 20% biodiesel in fossil diesel and biogas, introduced as gaseous fuel by varying its mass flow rate in a dual-fuel engine mode. An experimentation study was carried out to find the performance and emission parameters of the engine relative to pure diesel. The results were very much similar to the majority of researchers who used biodiesel and gaseous fuels in a dual-fuel engine. Brake specific fuel consumption (BSFC) of the engine was noticed to have increased, while brake thermal efficiency was on the lower side in dual fuel mode in comparison with regular diesel. In relation with conventional diesel, it was noticed that combined effect of rice bran methyl esters and varying mass flow rate of biogas showed a decrement in NO x and smoke emissions, whereas HC and CO exhalations were on higher side when biogas and biodiesel were utilized collectively in dual-fuel engine. Hence, it was concluded that combination of blends of biodiesel and diesel and introduction of biogas in the engine can be a promising combination which can be used as a substitute fuel for addressing future energy needs.  相似文献   

2.
ABSTRACT

This study investigates the merits of exergy analysis over energy analysis for small direct injection (DI) diesel engine using the blend of waste cooking oil biodiesel and petroleum diesel. Taguchi’s “L’ 16” orthogonal array has been used for the design of experiment. The engine tested at different engine speeds, load percentages, and blend ratios, using the waste cooking oil biodiesel. Basic performance parameters and fuel input exergy, exergetic efficiency (second law efficiency), exergy associated with heat transfer, exergy associated with the exhaust gas and destruction of exergy are calculated for each blend of waste cooking oil biodiesel and diesel. Results show that the optimum operating conditions for minimum brake-specific fuel consumption (BSFC) and exergy destruction are achieved when engine speed at 1900 rev/min, load percentage is 75%, and the engine is fueled with B40.  相似文献   

3.
Abstract

The objective of this study was to estimate mathematical relationships derived from biodiesel fuels from various vegetable oils by non-catalytic supercritical methanol and ethanol method. The vegetable oils are all extremely viscous with viscosities ranging from 10 to 20 times greater than petroleum diesel fuel. The aim of the transesterification process is to lower the viscosity of the oil. Methyl and ethyl esters as biodiesels were prepared from vegetable oils through transesterification by non-catalytic supercritical fluids. The biodiesels were characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value (HHV). The viscosities of biodiesels (3–5 mm2/s at 311 K) were much less than those of pure oils (27–54 mm2/s at 311 K), and their HHVs of approximately 40.5 MJ/kg were 10% less than those of petrodiesel fules (~45 MJ/kg). The most important variables affecting the ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. There is high regression between density and viscosity values vegetable oil methyl esters. The relationships between viscosity and flash point for vegetable oil methyl esters are considerably regular.  相似文献   

4.
Fossil fuels are available in limited quantity and may extinct in future. Moreover, pollutant emission from diesel engines affects the ecological systems. Biodiesel, derived from vegetable oil, is a renewable and green source of fuel. In this study, biodiesel produced from base catalyzed transesterification was blended with different diesel volumes. The diesel–biodiesel blends showed varied flash point (168–42°C), viscosity (4.34–3.31 mm2/s), density (0.872–0.8351 g/cm3), acid value (0.3–0.4 mg KOH/g), and cetane number (51.6–49.5). The results showed that alcohol addition helped in reducing viscosity and density of biodiesel by almost half. These provide explanation on engine performance, combustion, and emission characteristics.  相似文献   

5.
Biodiesel either in neat form or as a mixture with diesel fuel is widely investigated to solve the twin problem of depletion of fossil fuels and environmental degradation. The main objective of the present study is to compare performance, emission and combustion characteristics of biodiesel derived from non edible Jatropha oil in a dual fuel diesel engine with base line results of diesel fuel. The performance parameters evaluated were: brake thermal efficiency, brake specific fuel consumption, power output. As a part of combustion study, in-cylinder pressure, rate of pressure rise and heat release rates were evaluated. The emission parameters such as carbon monoxide, carbon dioxide, un-burnt hydrocarbon, oxides of nitrogen and smoke opacity with the different fuels were also measured and compared with base line results. The different properties of Jatropha oil after transestrification were within acceptable limits of standards as set by many countries. The brake thermal efficiency of Jatropha methyl ester and its blends with diesel were lower than diesel and brake specific energy consumption was found to be higher. However, HC, CO and CO2 and smoke were found to be lower with Jatropha biodiesel fuel. NOx emissions on Jatropha biodiesel and its blend were higher than Diesel. The results from the experiments suggest that biodiesel derived from non edible oil like Jatropha could be a good substitute to diesel fuel in diesel engine in the near future as far as decentralized energy production is concerned. In view of comparable engine performance and reduction in most of the engine emissions, it can be concluded and biodiesel derived from Jatropha and its blends could be used in a conventional diesel engine without any modification.  相似文献   

6.
Neat mahua oil poses some problems when subjected to prolonged usage in CI engine. The transesterification of mahua oil can reduce these problems. The use of biodiesel fuel as substitute for conventional petroleum fuel in heavy-duty diesel engine is receiving an increasing amount of attention. This interest is based on the properties of bio-diesel including the fact that it is produced from a renewable resource, its biodegradability and potential to exhaust emissions. A Cummins 6BTA 5.9 G2- 1, 158 HP rated power, turbocharged, DI, water cooled diesel engine was run on diesel, methyl ester of mahua oil and its blends at constant speed of 1500 rpm under variable load conditions. The volumetric blending ratios of biodiesel with conventional diesel fuel were set at 0, 20, 40, 60, and 100. Engine performance (brake specific fuel consumption, brake specific energy consumption, thermal efficiency and exhaust gas temperature) and emissions (CO, HC and NOx) were measured to evaluate and compute the behavior of the diesel engine running on biodiesel. The results indicate that with the increase of biodiesel in the blends CO, HC reduces significantly, fuel consumption and NOx emission of biodiesel increases slightly compared with diesel. Brake specific energy consumption decreases and thermal efficiency of engine slightly increases when operating on 20% biodiesel than that operating on diesel.  相似文献   

7.
Recently, biodiesel has become more attractive since it is made from renewable resources and also for the fact that the resources of fossil fuels are diminishing day by day. This study compares combustion of B5, B10, B20, B50, B80 and B100 with petroleum diesel over wide input air flows at two energy levels in an experimental boiler. The comparison is made in terms of combustion efficiency and flue gas emissions (CO, CO2, NOX, and SO2) and influence of air flow at two energy levels 219 kJ/h and 249 kJ/h is studied. The findings show that at higher level energy diesel efficiency was a little higher than that of biodiesel, but at lower level biodiesels are efficient than diesel. Except B10, Biodiesel and other blends emitted less pollutant CO, SO2 and CO2 than diesel. B10 emitted lower CO2 and NOX, but emitted higher SO2 than diesel. Despite studies reporting an increase in the NOX level resulting from burning of biodiesel over conventional petroleum diesel fuels in engines, our findings indicated at the second energy level a reduction in the NOX level in the flue gases resulting from burning of biodiesel.  相似文献   

8.
The present work is dedicated to study of diesel–biodiesel–ethanol blends in a diesel engine using addition of various concentrations of carbon nanowires. Algae oil from microalgae has the potential to become a sustainable fuel source as biodiesel. The Neochloris oleoabundans algal oil was extracted by mechanical extraction method. The transesterification reaction of algal oil with methanol and base catalyst was used for the production of biodiesel. Experimental investigation results were studied for various parameters, such as exhaust emission of carbon monoxide, hydrocarbon, oxides of nitrogen gases, smoke, and carbon dioxide.  相似文献   

9.
Oxygenated fuels like biodiesel and alcohols have the potential to provide a reliable and a cost effective alternative to India's increasing future energy demands. They have a prospective future since they are renewable and can be produced easily in India's rural areas. Due to rapid industrialization and the increased number of vehicles on the road, the energy needs of the country are increasing rapidly. Oxygenated fuels can substantially replace the large demand for diesel to generate power for the industries and to fuel diesel engines of the vehicles. In spite of the many advantages of using them, most of the researchers have reported higher NOx emissions, which is a deterrent to the market expansion of these fuels. The present program aims to review the NOx emissions from the CI engines fuelled with oxygenated fuels. To meet the stringent emission norms, the various NOx reduction technologies like use of additives, retarded fuel injection timing, biodiesel emulsion with water, and exhaust gas recirculation are reviewed. The results of the most effective and low cost technique of EGR in DI diesel engine fuelled with biodiesel–diesel blends and tri-compound oxygenated diesel fuel blends (ethanol–biodiesel–diesel fuel blends and methanol–biodiesel–diesel fuel blends) are presented.  相似文献   

10.
The study includes the use of alcohols in conjunction with diesel as a binary fuel and biodiesel. In addition, this study was conducted on quaternary fuels (premium diesel, waste cooking biodiesel, n-butanol, and bioethanol), including Fe3O4 (iron(III) oxide)-doped reduced graphene oxide (rGO) nanocomposite to reduce the use of fossil fuels, their cost, and energy demand. It includes 10% bioethanol, 5%–20% n-butanol, 25 ppm Fe3O4-doped rGO nanocomposite, and 20% and 100% waste cooking biodiesel, all of which have been tested in a diesel engine to ensure that they are suitable for use. The findings were compared to those obtained with premium diesel, ranging from 50% to 100% at full engine load conditions. In comparison to 100% premium diesel fuel, the fuel blend (Blend G) had 37.50% brake thermal efficiency and 0.46% (brake-specific energy consumption), as well as lower rates of 316.2% carbon monoxide, 198.80% hydrocarbon, and 80.01% smoke with 28.10% higher oxides of nitrogen (NOx). Adding 20% n-butanol to premium diesel, as well as waste cooking biodiesel, bioethanol, and Fe3O4-doped rGO nanocomposite fuel blends, was used in this study to improve the performance of the diesel engine and reduce some of the NOx emissions. In the near future, these fuel blends may be a viable alternative combination for the diesel engine.  相似文献   

11.
Graphite oxide (GO) is an important member of the graphene family of carbon nanomaterials with remarkable physical, chemical, and thermal properties. We conducted an experimental investigation on the combustion characteristics of diesel and biodiesel droplets dosed with 0.1% GO. The fuels were tested by a single droplet combustion experiment in which the temporal variation in the burning behavior of a suspended droplet was captured using a high‐speed camera. Numerical analysis of the combustion data suggests that the addition of GO in both fuels resulted in shortened ignition delay (by up to 38.2%), increased burn‐rate constant (by up to 29.4%), lowered peak temperature (by up to 7.8%), and shortened burning period (by up to 11.6%). To illustrate, the burn‐rate constant increased from 0.68 to 0.88 mm2/second, and the burning period reduced from 2.7 to 2.2 seconds when GO was dosed in diesel. By contrast, the ignition delay and peak temperature both decreased from 1.6 to 1.4 seconds and 659 to 611 K, respectively, when GO was added in biodiesel. Our results suggest that the fuel additive–induced benefits could effectively reduce emissions and improve fuel consumption for diesel engine applications.  相似文献   

12.
Abstract

The purpose of this work is to investigate biodiesel production processes from vegetable oils. Biodiesel fuel can be made from new or used vegetable oils and animal fats, which are non-toxic, biodegradable, renewable resources. The vegetable oil fuels were not acceptable because they were more expensive than petroleum fuels. Biodiesel has become more attractive recently because of its environmental benefits. With recent increases in petroleum prices and uncertainties concerning petroleum availability, there is renewed interest in vegetable oil fuels for diesel engines. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, and some engine performance problems still exist. The purpose of the transesterification process is to lower the viscosity of the oil. Pyrolysis produces more biogasoline than biodiesel fuel.  相似文献   

13.
In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NOx), sulphur dioxide (SO2) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NOx emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification.  相似文献   

14.
Fast exhausting fossil fuel reserves and high rise in the air pollution levels due to combustion of these fuels bound us to discover some cleaner and environment-friendly fuels for the engines. Biodiesel from edible and non-edible seed oils has been identified as a better alternate of the diesel fuel in engines with a little sacrifice in terms of power output but with an improvement in exhaust emissions. The aim of the present research work is to optimize the input parameters of diesel engine running on Polanga biodiesel to improve performance and exhaust emissions. The input parameters selected for optimization are fuel injection timing, fuel injection pressure, Polanga biodiesel blend, and engine load with respect to brake thermal efficiency, brake specific fuel consumption, hydrocarbon emission, smoke opacity, and emission of nitrogen oxides. Relative weights of the response variables were calculated by standard deviation. The optimum combination of input parameters was obtained by Taguchi-based Multi-Objective Optimization by Ratio Analysis. Experiments were performed according to Taguchi’s L16 orthogonal array in a random manner in which three replicates of each experiment were noted. The optimum combination of input parameters for maximum performance and minimum exhaust emissions found to be as fuel injection timing 27° bTDC, fuel injection pressure –? 220 bar, biodiesel blend –? B40, and engine load –? 60%. The optimum values of the response variables, at the obtained optimum combination of input parameters, were predicted by Taguchi method and then verified experimentally and a good relation was found between them. These optimum values found to be as brake thermal efficiency –? 36.351%, brake specific fuel consumption –? 0.322 kg/kW-h, hydrocarbon emission –? 2.193 ppm, smoke opacity –? 80.925 HSU, and NOx emission –? 690.987 ppmv.  相似文献   

15.
利用热重分析技术对生物柴油和0#柴油进行燃烧特性分析,比较两者的热稳定性。根据DTG-DTA曲线及实验数据,利用Achar微分法和Coats-Redfen积分法计算了活化能,并推断出生物柴油和柴油在低温段和高温段的非等温动力学方程。实验表明:生物柴油的挥发分较高,易于燃烧;但低温段表面活化能高于生物柴油,热稳定性优于柴油。  相似文献   

16.
Abstract

In this study, usage of methyl ester obtained from waste cooking oil (WCO) is evaluated as an alternative energy source. Potential of obtained biodiesel from WCO in the World and Turkey was determined. Physical and chemical properties of methyl ester were determined in the laboratory. The methyl ester was tested in a diesel engine with turbocharged, four cylinders and direct injection. Obtained results were compared with No. 2 diesel fuel. In addition, if WCO is evaluated as biodiesel, environmental pollution caused by waste cooking oil diminished.  相似文献   

17.
To study the characteristics of volatile organic compounds (VOCs) emissions from an engine fueled with methanol diesel, an experiment compared with petroleum diesel (0# diesel) and biodiesel was carried out on a Xichai 4CK diesel engine test bench by the solid phase adsorption-thermal desorption-gas chromatography mass spectrometry method. In this experiment, methanol-diesel (20 vol.% methanol), petroleum diesel and biodiesel were analyzed through the sampling system, which consists of Tenax TA adsorption tubes, flow sampling pump, the capillary gas chromatography–mass spectrometry (CGC/MS), etc. The experimental results demonstrate that total volatile organic compounds (TVOC) emissions of methanol diesel are lower than petroleum diesel but higher than biodiesel at maximum power, and that TVOC emissions of methanol diesel reduce with the rise of load but increase when the rotation speed of engine gets faster. And benzene and toluene are two main components of TVOC emissions of methanol diesel, accounting for more than 70% at rated power. Therefore, this study can provide a theoretical basis for popularization and development of methanol-diesel fuel in the future, meanwhile, contributing to make relative regulations and standards to control its emissions.  相似文献   

18.
生物柴油特性分析与应用   总被引:11,自引:0,他引:11  
生产生物柴油的主要原料是可再生的生物资源,生物柴油含氧而基本不合硫和芳香烃,具有良好的燃料品质和环境友好性,从能源战略角度分析,生物柴油是最为重要的代用燃料之一.柴油机不需改动即可使用生物柴油,柴油机使用生物柴油不仅利于改善燃料结构,而且可以降低有害排放.本文对比了生物柴油与矿物柴油的燃料特性,分析了柴油机燃用生物柴油的好处,介绍了生物柴油在国内外的发展情况,指出发展生物柴油的目的并不是要取代矿物柴油,而在于改善矿物柴油的性能,以满足不断严格的排放标准,并对推动我国生物柴油的发展提出了建议.  相似文献   

19.
This paper investigates the effects of turbocharger on the performance of a diesel engine using diesel fuel and biodiesel in terms of brake power, torque, brake specific consumption and thermal efficiency, as well as CO and NOx emissions. For this aim, a naturally aspirated four-stroke direct injection diesel engine was tested with diesel fuel and neat biodiesel, which is rapeseed oil methyl ester, at full load conditions at the speeds between 1200 and 2400 rpm with intervals of 200 rpm. Then, a turbocharger system was installed on the engine and the tests were repeated for both fuel cases. The evaluation of experimental data showed that the brake thermal efficiency of biodiesel was slightly higher than that of diesel fuel in both naturally aspirated and turbocharged conditions, while biodiesel yielded slightly lower brake power and torque along with higher fuel consumption values. It was also observed that emissions of CO in the operations with biodiesel were lower than those in the operations with diesel fuel, whereas NOx emission in biodiesel operation was higher. This study reveals that the use of biodiesel improves the performance parameters and decreases CO emissions of the turbocharged engine compared to diesel fuel.  相似文献   

20.

Biodiesel from transesterification of vegetable oils is an excellent alternative fuel. There is, however, a need to develop a direct process for conversion of vegetable oils into gasoline-competitive biodiesel and other petroleum products. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The purpose of the transesterification process is to lower the viscosity of vegetable oil. Compared to No. 2 diesel fuel, all of the vegetable oils are much more viscous, whereas methyl esters of vegetable oils are slightly more viscous. The methyl esters are more volatile than those of the vegetable oils. Conversion of vegetable oils to useful fuels involves the pyrolysis and catalytic cracking of the oils into lower molecular products. Pyrolysis produces more biogasoline than biodiesel fuel. Soap pyrolysis products of vegetable oils can be used as alternative diesel engine fuel. The soaps obtained from the vegetable oils can be pyrolyzed into hydrocarbon-rich products. Zinc chloride catalyst contributed greatly to high amounts of hydrocarbons in the liquid product. The yield of ZnCl 2 catalytic conversion of the soybean oil reached the maximum 79.9% at 660 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号