首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Removal of chromium(VI) ions and their reduction were studied on the anion exchanger Dowex PSR-2 in the pH range from 1.5 to 10. The parameters of Cr(VI) sorption process on the anion exchanger were calculated based on the most popular isotherm models such as: Freundlich, Langmuir, Temkin, and Dubinin–Radushkevich (D-R). The Langmuir isotherm was the most appropriate to describe Cr(VI) sorption. The Cr(VI) uptake by Dowex PSR-2 was found to follow the pseudo-second-order rate kinetics. Reduction of chromium(VI) in the pH range 1.5–10 was observed using the HPLC-ICP-MS (high-performance liquid chromatography–inductively coupled plasma-mass spectrometry) method. Oxidation of tri-n-butyl quaternary ammonium groups during the chromate (VI) removal process was observed.  相似文献   

2.
Monolithic PolyHIPE Polymer (PHP), being a highly porous, low density, open cellular material was produced by polymerization of a high internal phase emulsion (HIPE) in which the polymerizable continuous phase consisted of monomers, styrene (STY), and divinyl benzene (DVB). The inner dispersed phase (90 vol %) was an aqueous solution containing 0.4 wt % potassium persulphate as initiator. The resulting porous structure had 12% crosslinking density. Surface chemistry of the monoliths was modified by chloromethylation and amination to impart anionic functionality. Surface modified monoliths had ion exchange capacity of 3.01 meq/g, and had the ability to uptake water about 10 times of its mass. It was used Cr (VI) ion removal from aqueous solution. The experimental results investigated for both the Langmuir and the Dubinin–Radushkevich adsorption models. The maximum Cr (VI) adsorptions are 126.6 mg Cr (VI)/g and 129.3 mg Cr (VI)/g, respectively. The mean free energy E of adsorption is 11.18 kJ/mol according to the Dubinin–Radushkevich adsorption model, indicating that the adsorption occurs through a chemical ion‐exchange process and it is not diffusion limited. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42286.  相似文献   

3.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

4.
Hexavalent chromium (Cr(VI)) adsorption from aqueous solutions on magnetically modified multi-wall carbon nanotubes (M-MWCNT) and activated carbon (M-AC) was investigated. M-MWCNT and M-AC were prepared by co-precipitation method with Fe2+:Fe3+ salts as precursors. The magnetic adsorbents were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The effects of amount of adsorbents, contact time, initial pH, temperature and the initial concentration of Cr(VI) solution were determined. The adsorption equilibrium, kinetics, thermodynamics and desorption of Cr(VI) were investigated. Equilibrium data fitted well with the Langmuir isotherm for both of the adsorbents. The theoretical adsorption capacities are 14.28 mg/g of M-MWCNT and 2.84 mg/g of M-AC. Cr(VI) adsorption kinetics was modeled with pseudo-second order model, intra-particle diffusion model and Bangham model. Thermodynamic parameters were calculated and ΔG°, ΔH° and ΔS° indicate that the adsorption of Cr(VI) onto M-MWCNT and M-AC was exothermic and spontaneous in nature. Results revealed that M-MWCNT is an easily separated effective adsorbent for Cr(VI) adsorption from aqueous solution.  相似文献   

5.
Quite a number of reports are available on metal binding capacity of different groups of microorganisms. However, reports on the equilibrium studies on biosorption by marine fungi are quite inadequate. The present study was carried out in a batch system using dead biomass of marine Aspergillus niger for the sorption of Cr(VI). The removal rate of Cr(VI) was increased with a decrease in pH and an increase in Cr(VI) and biomass concentration. A. niger exhibited the highest Cr(VI) uptake of 117.33 mg g?1 of biomass at pH 1.0 in the presence of 400 mg l?1 Cr at 50 °C. Kinetics studies based on fractional power, zero order, first order, pseudo-first order, Elovich, second order and pseudo-second order rate expressions have also been carried out. The experimental data were analyzed using five, two-parameter isotherms (Langmuir, Freundlich, Dubinin–Radushkevich, Temkin and Halsey). It was observed that Langmuir model exhibited the best fit to experimental data. Thermodynamic parameters of the biosorption (ΔG°, ΔH° and ΔS°) were also determined.  相似文献   

6.
The aim of this research was to investigate the sorption characteristics of polyaniline coated on sawdust (PAn/SD) for the removal of Cr(VI) ions from aqueous solutions. The sorption of Cr(VI) ions was carried out by the batch method. Characterization of PAn/SD was done by FTIR and SEM. The optimum conditions of sorption were found to be a PAn/SD dose of 0.6 g in 100 mL of Cr(VI) solution (50 mg/L), a contact time of 20 min, pH 2, and a temperature of 20°C, Increased temperature had a negative effect on the removal efficiency. Three equations, that is Morris–Weber, Lagergren, and pseudo‐second‐order, were tested to track the kinetics of the removal process. The kinetic data indicated that the adsorption process was described by the Morris–Weber equation. The Langmuir, Freundlich, and Dubinin–Radushkevick models were used with sorption data to estimate sorption capacity, intensity, and energy. The data were fitted with the Freundlich model. The thermodynamic parameters ΔH, ΔS, and ΔG were evaluated. They showed that the adsorption of Cr(VI) onto PAn/SD was feasible, spontaneous, and exothermic under the studied conditions. For desorption of Cr(VI) adsorbed onto PAn/SD, aqueous NaOH was used; with it, 85% of the adsorbed Cr(VI) could be desorbed. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
The walnut shell supported nanoscale zero‐valent iron (walnut‐nZVI) was prepared from sodium borohydride, iron(II) chloride tetrahydrate, and walnut shell by liquid phase chemical reduction and characterized by FTIR, TEM, and XRD. The composites were tested as adsorbent for the removal of Cu(II) or Ni(II) ions. The equilibrium data were analyzed by the Langmuir, Freundlich, Dubinin–Radushkevich, which revealed that Langmuir isotherm was more suitable for describing Cu(II) and Ni(II) ions adsorption than the other two isotherm models. The results indicated that the maximum adsorption capacity was higher than some other modified biomass waste adsorbents under the proposed conditions, were 458.7, 327.9 mg g?1 for Cu(II) or Ni(II). The adsorption kinetics data indicated that the adsorption fitted well with the pseudo‐second‐order kinetic model. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43304.  相似文献   

8.
Zeolite A and analcime were prepared using microwave method and fully characterized. Both zeolites had high surface area and sharp peak. Both zeolite types were introduced for removal of 100 mg/L of 5 metal ions. The operating conditions were optimized. Adsorption followed pseudo-first-order kinetics and fits for Langmuir, Freundlich, Dubinin–Kaganer–Radushkevich, and Temkin models. Adsorption capacities were in the order Co > V > As > Pb > Ni. Zeolite A was more efficient in metal removal than analcime due to its higher surface area. Zeolite types can be used in efficient metals removal up to more than eight cycles.  相似文献   

9.
A new polymeric adsorbent material based on polyethylene (PE) was prepared by photografting of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) as a positively chargeable monomer to a PE film. The effects of the experimental parameters, such as the pH value, temperature, and grafted amount on adsorption of chromium(VI) (Cr(VI)) ions were investigated for the DMAEMA‐grafted PE (PE‐g‐PDAMEMA) films. The maximum adsorption capacity was obtained at the initial pH value of 3.0 for a PE‐g‐PDMAEMA film with 1.8 mmol/g and the maximum adsorption capacity obtained was higher than or compatible to those of many of the other polymeric adsorbents prepared for Cr(VI) ions. The adsorption kinetics obeyed the mechanism of the pseudo‐second order kinetic model and adsorption of Cr(VI) ions on PE‐g‐PDMAEMA films was well expressed by the Langmuir isotherm model. A high Langmuir adsorption constant suggests that the adsorption of Cr(VI) ions occurs between protonated dimethylamino groups and ions mainly through the electrostatic interaction. Cr(VI) ions adsorbed were successfully desorbed from a PE‐g‐PDMAEMA film in solutions of NaCl, NH4Cl, NH4Cl containing NaOH, and NaOH and a PE‐g‐PDMAEMA film was regenerated and repeatedly used for adsorption of Cr(VI) ions without appreciable loss in the adsorption capacity. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43360.  相似文献   

10.
Chromium is present in wastewaters resulted from a lot of industrial processes such as electroplating, dye, cement, leather tanning, and paint. Its presence at values higher than maximum admitted value of 0.05 mg/L can affect the human health and the environment. Therefore, it is essential to remove chromium from wastewaters before discharge. In this study, the adsorption potential of three types of Co (II)-based phosphonate metal organic frameworks, obtained by the reaction of CoSO4.7H2O with phosphonoacetic acid (CP), N,N-bis(phosphonomethyl)glycine (Gly), or vinyl phosphonic acid (VP) in hydrothermal conditions, has been investigated. The study involves batch types experiments investigating the effects of the solution pH, solid:liquid ratio, initial concentration of Cr(VI), and contact time upon the adsorption efficiency of the studied materials. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich were applied to adsorption equilibrium data to find the best among these models. The kinetics of adsorption was found to follow the pseudo-second-order model. It was found that the adsorption efficiency of the studied materials in the removal process of Cr(VI) ions from aqueous solutions is in the following order: Co-CP<Co-Gly< Co-VP.  相似文献   

11.
The objective of this work was to investigate the sorption characteristics of polypyrrole (PPy) for the removal of Cr(VI) from aqueous solutions. The sorption process was carried out by a dynamic batch method in order to determine the optimum conditions. For a sorbent dose of 0.6 g in 100 mL of a Cr(VI) solution, at a contact time of 15 min and a pH of 3, a removal efficiency of 84.5% was achieved. The Morris–Weber and Lagergren equations, as well as a pseudo‐second‐order equation were examined to explore the kinetics of the removal process. In addition, the Langmuir, Freundlich, and Dubinin–Radushkevich isotherm models were applied to estimate the capacity, intensity, and energy of the sorption process. It was found that increasing temperature showed a positive effect on the ion sorption efficiency. In summary, PPy was shown to be a suitable candidate for chromium(VI) ion removal from aqueous solutions at different concentrations. J. VINYL ADDIT. TECHNOL., 2011. © 2011 Society of Plastics Engineers.  相似文献   

12.
Nickel was coated on carbon and it was characterized by SEM and XRD. Sorption of Cd(II) ions onto carbon and nickel‐coated carbon (Ni/C), effect of acids, pH, shaking time, loading capacity, and adsorbent weight has been investigated. Acids reduce sorption and maximum sorption takes place from deionized water and Rd values for carbon and Ni/C in deionized water are 212.9 ± 0.9 and 232.5 ± 2.5. The sorption data followed the Freundlich, Dubinin–Radushkevich (D–R), isotherms and different parameters have been calculated. Sorption free energy values have been calculated and are 12.56 ± 0.19 and 14.84 ± 0.196 for carbon and Ni/C and indicate that adsorption process is chemisorption. Increase in adsorption shows the increase in catalytic activity of the adsorbent. The variation of sorption with temperature has been used to calculate the values of ΔH, ΔS, and ΔG for Cd(II) sorption. These values show that adsorption of Cd(II) ions on the adsorbents is endothermic, spontaneous, and entropy driven. Coating of carbon with nickel has improved its adsorption properties. Adsorption behaviour provides useful information for the catalytic activity of catalysts.  相似文献   

13.
Biological sources are renewable basic resources that may be used for several purposes, including the development of green materials for the removal of heavy metal ions. Cellulose nanocrystals (CNCs) extracted from waste papers via acid hydrolysis were modified and utilized as adsorbents to remove Cr (VI) ions from metallurgical effluent in this work. X-ray diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, thermogravimetric analysis, and zeta potentiometer were used to characterize the CNCs. The CNCs treated with succinic anhydride and ethylenediaminetetraacetic acid tetrasodium salt have thin particle sizes and are porous. The carboxylate functional group is primarily engaged in the coordination and selective removal of metal ions (–COO2−) and thermal degradation of 85%, observed at temperatures between 250–380°C. On the surface of the modified CNCs, the zeta potential data showed a decrease in negative value. The results revealed that the modified CNCs had a maximum adsorption capacity of 387.25 ± 0.88 mg L−1 at pH 5, at CNCs doses of 25 and 400 mg L−1 as starting concentrations. The adsorption equilibrium period was 300 min and the temperature was 313 K. The equilibrium results fit the Langmuir isotherm model with an R2 of 0.993 and a qmax of 340 ± 0.97. The Chi-square (X2) and Marquardt's percent standard deviation tests confirmed that the adsorption process was pseudo-second-order with an R2 of 0.998, and the Elovich model revealed that Cr (VI) complexed with the adsorbent's functional groups. The reaction was endothermic due to positive ΔH and spontaneous due to negative ΔG. The positive ΔS indicates that the adsorption process enhances the unpredictability of the solid/liquid interface, according to thermodynamic analysis. After acid treatment, the CNCs may be effectively reused for six cycles with an adsorption capacity of 220 ± 0.78 mg g−1.  相似文献   

14.
The adsorption kinetics and equilibrium of silica-gel functionalized with amino-terminated dendrimer-like polyamidoamine (PAMAM) polymers SiO2-G1.0, SiO2-G2.0 and SiO2-G3.0 for Cu2+ in ethanol fuel were investigated by using batch method. The results indicated that the all the adsorptions of the three adsorbents followed well the pseudo second-order model. The adsorption isotherms were fitted by Langmuir model, Freundlich model and Dubinin–Radushkevich (D–R) model. The results showed that Langmuir model was more suitable to describe the equilibrium data than the Freundlich model. From the D–R isotherm model, the mean free energy E calculated of the three adsorbents showed that the adsorptions were taken place by physical processes. Thermodynamic parameters, ΔG0, ΔH0 and ΔS0 indicated the Cu2+ adsorption to be endothermic and spontaneous with decreased randomness at the solid-solution interface, resulting in their higher adsorption capacities at higher temperature. The effect of generation number of PAMAM polymers loaded on silica-gel, contact time, initial concentration and temperatures on the adsorption capabilities were studied in detail. Moreover, the adsorption mechanism of copper from ethanol fuel was also presumed.  相似文献   

15.
H. Ge  X. Fan 《化学工程与技术》2011,34(10):1745-1752
A novel activated carbon‐chitosan complex adsorbent (ACCA) was prepared via the crosslinking of glutaraldehyde and activated carbon‐(NH2‐protected) chitosan complex under microwave irradiation. The surface morphology of this adsorbent was characterized. The adsorption of ACCA for Pb2+ and Cd2+ was investigated. The results demonstrate that ACCA has higher adsorption capacity than chitosan. The adsorption follows pseudo first‐order kinetics. The isotherm adsorption equilibria are better described by Freundlich and Dubinin‐Radushkevich isotherms than by the Langmuir isotherm. The adsorbent can be recycled. These results have important implications for the design of low‐cost and effective adsorbents in the removal of heavy metal ions from wastewaters.  相似文献   

16.
Various metal-oxide nanoparticles and chitosan were blended to form new adsorbents (M-Oxide-CTS) for removing boron from aqueous solutions in a batch system. The maximum boron adsorption capacity (q = 7.8 mg/g) was reached at pH = 4 within 5 min. Calculations based on Langmuir, Freundlich, and Dubinin–Radushkevich models showed the heterogeneous and physical nature of boron adsorption on M-Oxide-CTS. Modeling of the thermodynamic date indicated the nonspontaneous and exothermic process. The pseudo-second-order model adequately described the boron adsorption on M-Oxide-CTS. Desorption by means of alkaline solution at pH = 12 was carried out successfully.  相似文献   

17.
Modified chitosan beads (CB) were prepared and used for the removal of Fe(III) ions from aqueous solution. The advantages of modified CB than raw CB have been explored. The sorption capacity (SC) of the modified forms of CB namely, protonated CB, carboxylated CB, and grafted CB were found to be 3533, 3905, and 4203 mg kg?1, respectively, while the raw CB showed the SC of 2913 mg kg?1 only. Batch adsorption studies were conducted to optimize various equilibrating conditions like contact time, pH, and coions. The sorbents were characterized by FTIR, WDXRF, and SEM with EDAX analysis. The sorption process has been explained with Freundlich and Langmuir isotherms. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were calculated to understand the nature of sorption. Modified CB are more selective for Fe(III) than Cu(II), which inturn higher than Cr(VI). A suitable mechanism for iron sorption onto modified CB was established. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The preparation of organomodified zeolites with different framework structures (FAU, LTA and MOR) using N-cetylpyridinium bromide (CPB) as tailoring agent was studied. The sorption properties of CPB-modified zeolites were evaluated in the removal of tannery contaminants from aqueous solution. The CPB-modified FAU-type zeolite presented the highest Cr(VI) retention capacity (37 mmol/kg) due to the higher Cr(VI) retention of its unmodified form (larger pore opening) and its high CPB sorption capacity. CPB-modified FAU zeolite also exhibited high thermal stability as consequence of special interactions between the CPB molecules and the zeolite surface. In addition, the intrinsic Cr(III) exchange capacity of FAU zeolite increased with CPB loading (162–527 mmol/kg), which appear to be due to an additional retention mechanism provided by the sorbed cetylpyridinium surfactant layer. On other hand, CPB-modified FAU zeolite also exhibited high toluene retention capacity (62 mmol/kg) due to of the hydrophobic character of its surfactant-modified surface and toluene adsorption on internal sorption sites of FAU zeolite. Thus, CPB-modified FAU zeolite appears as a promising adsorbent for simultaneous removal of Cr(III), Cr(VI) and toluene contaminants from aqueous solution.  相似文献   

19.
The catalytic oxidation of 1,2-dichlorobenzene was investigated over NaY and NaX zeolites, loaded with chromium through the action of a robust biosorption system consisting of a bacterial biofilm supported on the zeolites. The results of biosorption showed that the maximum metal removal efficiency was 20%, in both systems based on NaY or NaX, starting from solutions with chromium(VI) concentrations ranging from 50 to 250 mgCr/L. The bacterial biofilm, Arthrobacter viscosus, supported on the zeolite reduces Cr(VI) to Cr(III). The Cr(III) is retained in the zeolite by ion exchange. The new catalysts were characterized by spectroscopic methods (FTIR ), chemical analyses (ICP-AES), surface analysis (XRD) and thermal analysis (TGA). The various techniques of characterization show that this biosorption process does not modify the morphology and structure of the FAU-zeolites. These catalysts, Cr/FAU, prepared through this new procedure present good activity and selectivity for dichlorobenzene oxidation in wet air at 350 °C. The Cr50-Y was selected as the most active, selective and stable catalyst for oxidation of 1,2-dichlorobenzene in wet air.  相似文献   

20.
In the present study, a low-cost adsorbent is developed from the naturally and abundantly available sawdust which is biodegradable. The removal capacity of Cr(VI) from aqueous solutions and from the synthetically prepared industrial effluent of electroplating and tannery industries is obtained. The batch experiments are carried out to investigate the effect of the significant process parameters such as initial pH, change in pH during adsorption, contact time, adsorbent amount, and the initial Cr(VI) concentration. The maximum adsorption of Cr(VI) on sawdust is obtained at an initial pH value of 1. The value of pH increases with increase in contact time and initial Cr(VI) concentration. The equilibrium data for the adsorption of Cr(VI) on sawdust is tested with various adsorption isotherm models such as Langmuir, Freundlich, Redlich–Peterson, Koble–Corrigan, Tempkin, Dubinin–Radushkevich and Generalized equation. The Langmuir isotherm model is found to be the most suitable one for the Cr(VI) adsorption using sawdust and the maximum adsorption capacity obtained is 41.5 mg g−1 at a pH value of 1. The adsorption process follows the second-order kinetics and the corresponding rate constants are obtained. Desorption of Cr(VI) from sawdust using acid and base treatment exhibited a higher desorption efficiency by more than 95%. A feasible solution is proposed, for the disposal of the contaminant (acid and base solutions) containing high concentration of Cr(VI) obtained during the desorption process. The interference of other ions which are generally present in the electroplating and tannery industrial effluent streams on the Cr(VI) removal is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号