首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three series of copoly(amide–ester–imide)s were prepared from amino acid (4-aminobenzoic acid, 3-aminobenzoic acid, or 6-aminohexanoic acid) and N-(4-hydroxyphenyl)phthalimide-4-carboxylic acid (M1), N-(3-hydroxyphenyl)phthalimide-4-carboxylic acid (M2), or N-(2-methyl-4-hydroxyphenyl)phthalimide-4-carboxylic acid (M3) in the presence of diphenylchlorophosphate (DPCP) and pyridine as direct condensation agents. The inherent viscosities of copoly(amide–ester–imide)s were in the range of 0.13–0.95 dL/g. Thermotropic liquid crystalline (LC) behavior of these polymers was examined by differential scanning calorimetry (DSC) and optical polarizing microscopy. These copoly(amide–ester–imide)s ( IIa, IIe, IIIa , and IIIc ) polymerized from 3-aminobenzoic acid or 6-aminohexanoic acid with M1 or M3, respectively, showed thermotropic liquid crystalline behavior in the range of 190–426°C. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Two new aromatic diester‐dicarboxylic acids containing furan rings, namely, benzofuro[2,3‐b]benzofuran‐2,9‐dicarboxyl‐bis‐pyridyl ester‐4,4′‐dicarboxylic acid and benzofuro[2,3‐b]benzofuran‐2,9‐dicarboxyl‐bis‐phenyl ester‐4,4′‐dicarboxylic acid were synthesized by the reaction of benzofuro[2,3‐b]benzofuran‐2,9‐dicarbonyl chloride with 6‐hydroxynicotinic acid and 4‐hydroxybenzoic acid, respectively. These monomers were converted to aromatic copoly(ester–amide)s by reaction with various aromatic diamines via direct polycondensation. Polymers were characterized by FTIR and 1H NMR spectroscopy, thermogravimetry, viscosity and solubility tests. The inherent viscosity of the polymers was in the range 0.23–0.46 dl g?1 in dimethyl sulfoxide at 30 °C. They dissolved readily in polar solvents at room temperature. They possess a glass‐transition temperature in the range 210–260 °C and exhibit excellent thermal stability. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
A series of alternating aliphatic poly(amide‐ester)s, derived from dicarboxylic acid and aminoalcohols, were obtained by polycondensation in melt. All poly(amide‐ester)s were characterized by FTIR and 1H/13C‐NMR spectroscopies. The synthesized polymers showed an inherent viscosity ranging from 0.4 to 1.0 dL g?1. Thermal analysis showed melting points within the range 100–115°C and glass transition within the range 30–60°C. Decomposition temperatures were more than 200°C higher than the corresponding melting temperatures. The polymers can thus be processed from the melt. The processed polymers were partially crystalline with good thermal stability. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 362–368, 2005  相似文献   

4.
A new aromatic diamine, viz., bis‐(4‐aminobenzyl) hydrazide (BABH), which contains preformed hydrazide and methylene linkage, was synthesized starting from α‐tolunitrile. The BABH and intermediates involved in its synthesis were characterized by spectroscopic methods. Novel poly(amide‐hydrazide)s were synthesized by low temperature solution polycondensation of BABH with isophthaloyl chloride (IPC) and terephthaloyl chloride (TPC). Furthermore, two series of copoly(amide‐hydrazide)s, based on different mol % of BABH and bis‐(4‐aminophenyl) ether (ODA) with IPC/TPC were also synthesized. Poly(amide‐hydrazide)s and copoly(amide‐hydrazide)s were characterized by inherent viscosity [ηinh], FTIR, solubility, X‐ray diffraction (XRD), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The polycondensation proceeded smoothly and afforded the polymers with inherent viscosities in the range of 0.18–0.93 dL/g in (NMP + 4% LiCl) at 30°C ± 0.1°C. These polymers dissolved in DMAc, NMP or DMSO containing LiCl. The solubility of copolymers was considerably improved in line with less crystalline nature due to random placement of constituent monomers during the copolymerization. XRD data indicated that poly(amide‐hydrazide)s from BABH alone and IPC/TPC had higher crystallinity than the corresponding copoly(amide‐hydrazide)s derived from a mixture of BABH and bis‐(4‐aminophenyl) ether (ODA). Polymers showed initial weight loss around 160°C which is attributed to the cyclodehydration leading to the formation of corresponding poly(amide‐oxadiazole)s. Copolyamide‐hydrazides showed Tmax between 400 and 540°C which is essentially the decomposition of poly(amide‐oxadiazole)s. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
Thermotropic liquid‐crystalline copoly(ester‐amide)s consisting of three units of p‐oxybenzoate (B), ethylene terephthalate (E) and p‐benzamide (A) were studied by proton nuclear magnetic resonance at 200 and 400 MHz, wide‐angle X‐ray diffraction, and high‐resolution thermogravimetry to ascertain their molecular and supermolecular structures, thermostability and kinetics parameters of thermal decomposition in both nitrogen and air. The assignments of all resonance peaks of [1H]NMR spectra for the copoly(ester‐amide)s are given and the characteristics of X‐ray equatorial and meridional scans are discussed. Overall activation energy data of the first major decomposition have been evaluated through three calculating techniques. The thermal degradation occurs in three steps in nitrogen and air. The degradation temperatures are higher than 447 °C in nitrogen and 440 °C in air and increase with increasing B‐unit content at a fixed A‐unit content of 5 mol%. The temperatures at the first maximum weight‐loss rate are higher than 455 °C in nitrogen and 445 °C in air and also increase with an increase in B‐unit content. The first maximum weight‐loss rates range between 11.1 and 14.5%min−1 in nitrogen and between 11.9 and 13.5%min−1 in air. The char yields at 500 °C in both nitrogen and air range from 45.8 to 54.3 wt% and increase with increasing B‐unit content. But the char yields at 800 °C in nitrogen and air are quite irregular with the variation of copolymer composition and testing atmosphere. The activation energy and Ln (pre‐exponential factor) for the first major decomposition are usually higher in nitrogen than in air and increase slightly with an increase in B‐unit content at a given A‐unit content of 5 mol%. The activation energy, decomposition order, and Ln (pre‐exponential factor) of the thermal degradation for the copoly(ester‐amide)s in two testing atmospheres, are situated in the ranges of 210–292 kJmol−1, 2.0–2.8, 33–46 min−1, respectively. The three kinetic parameters of the thermal degradation for the aromatic copoly(ester‐amide)s obtained by high‐resolution thermogravimetry at a variable heating rate are almost the same as those by traditional thermogravimetry at constant heating rate, suggesting good applicability of kinetic methods developed for constant heating rate to the variable heating‐rate method. These results indicate that the copoly(ester‐amide)s exhibit high thermostability. The isothermal decomposition kinetics of the copoly(ester‐amide)s at 450 and 420 °C are also discussed and compared with the results obtained based on non‐isothermal high‐resolution thermogravimetry. © 1999 Society of Chemical Industry  相似文献   

6.
A new naphthalene‐ring‐containing bis(ester–amine), 1,5‐bis(3‐aminobenzoyloxy)naphthalene, was prepared from the condensation of 1,5‐dihydroxynaphthalene with 3‐nitrobenzoyl chloride followed by catalytic hydrogenation. A series of novel naphthalene‐containing poly(ester–amide)s was synthesized by direct phosphorylation polyamidation from this bis(ester–amine) with various aromatic dicarboxylic acids. The polymers were produced in high yields and had moderate inherent viscosities of 0.47–0.81 dL g?1. The poly(ester–amide) derived from terephthalic acid was semicrystalline and showed less solubility. Other polymers derived from less rigid and symmetrical diacids were amorphous and readily soluble in most polar organic solvents and could be solution‐cast into transparent, flexible and tough films with good mechanical properties. The amorphous poly(ester–amide)s displayed well‐defined glass transition temperatures of between 179 and 225 °C from differential scanning calorimetry and softening temperatures of between 178 and 211 °C from thermomechanical analysis. These poly(ester–amide)s did not show significant decomposition below 400 °C in nitrogen or air. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
A new imide‐containing dicarboxylic acid based on a twisted binaphthylene unit, 2,2′‐bis(N‐trimellitoyl)‐1,1′‐binaphthyl (1), was synthesized from 1,1′‐binaphthyl‐2,2′‐diamine and trimellitic anhydride in glacial acetic acid. The structure of compound 1 was fully characterized with spectroscopic methods and elemental analysis. Series of thermally stable and organosoluble poly(amide imide)s (4a–4d) and poly(ester imide)s (5a–5d) with similar backbones were prepared by the triphenyl phosphite and diphenylchlorophosphate activated direct polycondensation of diimide dicarboxylic acid 1 with various aromatic diamines and diols, respectively. With due attention to the structural similarity of the resulting poly(amide imide)s and poly(ester imide)s, most of the differences between these two block copolyimides could be easily attributed to the presence of alternate amide or ester linkages accompanied by imide groups in the polymer backbone. The ultraviolet maximum wavelength values of the yellowish polymers were determined from their ultraviolet spectra. The crystallinity of these copolyimides was estimated by means of wide‐angle X‐ray diffraction, and the resultant polymers exhibited a nearly amorphous nature, except for the polymers derived from benzidine and 4,4′‐binaphthol. The poly(amide imide)s exhibited excellent solubility in a variety of highly polar aprotic solvents, whereas the poly(ester imide)s showed good solubility in less polar solvents. According to differential scanning calorimetry analyses, polymers 4a–4d and 5a–5d had glass‐transition temperatures between 331 and 357°C and between 318 and 342°C, respectively. The thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis, and the 10% weight loss temperatures of the poly(amide imide)s and poly(ester imide)s were between 579 and 604°C and between 566 and 577°C in nitrogen, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 3203–3211, 2006  相似文献   

8.
A series of semi-aromatic copoly(ether ether amide)s (hydroquinone (HQ) (0%)-HQ (100%)) were synthesized by 1,1-bis(4-hydroxyphenyl)-1-phenylethane (BHPPE), 1,4-benzenediol (HQ) and 1,6-N,N′-bis(4-fuorobenzamide) hexane (BFBH) in this work. The inherent viscosities of copoly(ether ether amide)s were in the range of 0.487–0.769 dl g−1. Following with increase of the content of HQ, the resultant polymers were converted from amorphous to crystalline. The copolymers were found to have high glass transition temperatures (Tg) of 141.4–155.6°C and weight-loss temperature (T5%) of 423.3–434.3°C. They can be hot-pressed into films with tensile strength of 63.3–87.6 MPa, and storage modulus over 0.8 GPa at about 150°C, indicating good thermal and mechanical property of the obtained copolymers. The results of rheological property showed that the copolymers had good melt flowability and thermal stability. Additionally, the introduction of HQ improved the corrosion resistance of copolymers, the obtained polymers HQ (60%), HQ (80%) and HQ (100%) exhibited better corrosion resistance than that of HQ (0%). Especially, HQ (80%) and HQ (100%) were insoluble in organic polar solvents such as DMSO, DMF because of their crystalline nature, indicating that they had potential to be applied to the corrosion-resistant materials.  相似文献   

9.
Herein, magnesium-doped zinc oxide nanorods (MgZnO NRs) were synthesized by the co-precipitation method and annealed at different temperatures in the range of 100–500?°C. The increase in the annealing temperature was found to influence both chemical and morphological structures of the MgZnO NRs: Ultraviolet–visible diffuse reflectance spectroscopy showed an increase in band gap with increase in the annealing temperature. Fourier-transform infrared spectra showed that two characteristic peaks at 487?cm?1 and 442?cm?1 corresponding to a weak Zn–O stretching initially decreased and then disappeared with increase in the annealing temperature. Moreover, the MgZnO NRs annealed at 100?°C had large crystallite size, high aspect ratio, and narrow edges. Remarkably, the MgZnO NRs annealed at 100?°C exhibited the highest antibacterial activity against both S. aureus and E. coli strains, attributed to the high aspect ratio and diffusion ability of the Zn2+ ions and large surface charge, crystallite size, and surface area. The MgZnO NRs annealed at the relatively low temperature of 100?°C could be easily produced commercially, in large quantities, and effectively used to prevent the growth of foodborne microbes in food packaging applications.  相似文献   

10.
A series of poly(ester‐amide)s based on an ester group containing lithocholic acid derivative [3‐(3‐carboxypropionyl) lithocholic acid] and several aromatic diamines (naphthalene‐1,5‐diamine, 4,4′‐diaminodiphenyl ether, 4,4′‐diaminodiphenylmethane, 4,4′‐diaminodiphenylsulfone, benzidine, m‐phenylenediamine, p‐phenylenediamine, and tetraphenylthiophene diamine) was synthesized and characterized by solubility, viscosity, IR, differential scanning calorimetry, thermogravimetric analysis, and optical microscopy. The polymers were soluble in most of the organic solvents and had inherent viscosities in the range of 0.21–0.38 dL/g. All the polymers exhibited a nematic mesophase, but only on shearing. Thermal transitions due to mesophase formation were not seen in the differential scanning calorimetry thermograms. However, the liquid crystalline character of the polymers was observed under an optical microscope. Thermogravimetric analyses revealed the maximum decomposition temperature was 390–435°C for these polymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 73–80, 2006  相似文献   

11.
The synthesis and characterization of a new series of chiral poly(ester‐amide)s are reported. They were prepared by the simple reaction of diacid chlorides with biphenolic azo chromophores and optically active dihydroxy compound (isosorbide) in dimethyl acetamide at 100 °C. The polymers containing isosorbide units were optically active. The polymers showed Tg between 100 and 190 °C and were stable up to 400 °C. These poly(ester‐amide)s showed a positive solvatochromism in UV–visible absorption spectra. Second harmonic generation activities were measured by the powder method. © 2001 Society of Chemical Industry  相似文献   

12.
A segmented block copolymer is synthesized using dihydroxy terminated polystyrene (PSt) (MW = 2,500 g/mol) and crystallizable amide segments. PSt length in the copolymer is varied from 2,500 to 10,000 g/mol using dimethylterephthalate (T). Amide segment is synthesized in situ using diamine‐diamide 6X6 (X = A or T) (synthesized by dimethylterepthalate [T], adipic acid [A], and hexamethylenediamine [6]) and T. This work is to modify the high Tg amorphous PSt to a semicrystalline copolymers (‐(PSt‐T)y‐6X6‐T‐)‐n). These copolymers have a very high inherent viscosity and depending on the amide concentration, the melting temperature of the polymers was ranged between 129°C and 248°C. The crystallinity of the amide segments is up to 75%. The AFM analysis showed the presence of crystalline ribbons with a high aspect ratio. All the polymers show single stage decomposition temperature centered around 420°C. The solvent resistivity of these materials is very high even at a low concentration of (5 wt%) amide content. POLYM. ENG. SCI., 58:361–368, 2018. © 2017 Society of Plastics Engineers  相似文献   

13.
Blends of two precursor polymers, polyhydroxy amide (PHA) and poly(amic acid) (PAA), were studied using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The presence of PHA enhanced thermal and mechanical properties of the polyblends. All of the polyblended films showed large endothermic peaks that decreased monotonically with increasing heat treatment temperature. The cyclization onset temperature (T1), initial decomposition temperature (T2), and weight residue at 900°C of the polyblends were shown to be in the ranges of 144–146°C, 532–540°C, and 44–45%, respectively. Also, the thermal stabilities were enhanced consistently with increasing annealing temperature from 25 to 250°C. The ultimate strength and initial modulus of the polyblends increased from 84 to 136 MPa and from 2.93 to 5.34 GPa, respectively, with increasing PHA content. Similar to the trend of thermal stability, increasing the annealing temperature of the polyblends increased the tensile properties of the films. The observed tensile properties are discussed in terms of the morphology of the fractured films as studied by scanning electron microscopy (SEM). The degree of crystallinity of the polyblends was characterized as a function of heat treatment temperatures by wide angle X‐ray diffractometry (WAXD).  相似文献   

14.
A new series of poly(ester imide)s were prepared from the polycondensation of isosorbide and a series of synthesized diacyl chloride monomers based on a reaction between 1,2,4-Benzenetricarboxylic anhydride (TMA) and various diamines. The structures of the resulting polymers were confirmed by Fourier transform infrared spectroscopy (FTIR) and 13C NMR spectra. Inherent viscosities and size exclusion chromatography (SEC) measurements proved the formation of high molecular weight poly(ester imide)s. The thermogravimetric analysis (TGA) showed deterioration temperature in the range of 221–400 °C indicating a good thermal stability. The differential scanning calorimetry (DSC) measurements revealed high glass transition temperature in the range of 67–185 °C. Wide angle X-ray diffraction measurements showed that the studied poly(ester imide)s were semi-crystalline. Most of the synthesized poly(ester imide) exhibited a good adhesion ability and tensile strength values comparable to analogous polymers.  相似文献   

15.
A series of main-chain liquid–crystalline ionomers containing sulfonate groups pendant on the polymer backbone were synthesized by an interfacial condensation reaction of 4,4′-dihydroxy-α,α′-dimethyl benzalazine, a mesogenic monomer, with brilliant yellow (BY), a sulfonate-containing monomer, and a 1/9 mixture of terephthaloyl and sebacoyl dichloride. The structures of the polymers were characterized by IR and UV spectroscopies. DSC and thermogravimetric analysis were used to measure the thermal properties of those polymers, and the mesogenic properties were characterized by a polarized optical microscope, DSC, and wide-angle X-ray diffraction. The ionomers were thermally stable to about 310 °C. They were thermotropic liquid–crystalline polymers (LCPs) with high mesomorphic-phase transition temperatures and exhibited broad nematic mesogenic regions of 160–170 °C, and they were lyotropic LCPs with willowy leaf-shaped textures in sulfuric acid. However, the thermotropic liquid–crystalline properties were somewhat weakened because the concentration of BY was more than 8%. The inherent viscosity in N-methyl-2-pyrrolidone suggested that intramolecular associations of sulfonate groups occurred at low concentration, and intermolecular associations predominated at higher concentration. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2210–2218, 2001  相似文献   

16.
A new triptycene‐containing dicarboxylic acid monomer was successfully synthesized by refluxing the diamine, bis(4‐aminophenoxy)phenyl triptycene with trimellitic anhydride in glacial acetic anhydride. A series of novel thermally stable poly(ester‐imide)s were prepared from dicarboxylic acid, bis(4‐trimellitimido phenoxy)phenyl triptycene with various diols by the direct polycondensation. The polymers were obtained in quantitative yields with inherent viscosities of 0.27–0.74 dL g?1. The resulting polymers dissolved in N‐methyl‐2‐pyrrolidinone, N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, and pyridine. These polymers were fairly stable up to a temperature >450°C and lost 10% weight in the range of 477°C and 575°C in nitrogen. The UV–V is absorption spectra revealed that most of the polymers had absorption maxima around 310 and 341 nm. POLYM. ENG. SCI., 54:2252–2257, 2014. © 2013 Society of Plastics Engineers  相似文献   

17.
A 2024Al metal matrix composite with 10?vol% negative expansion ceramic ZrMgMo3O12 was fabricated by vacuum hot pressing, and the influence of sintering temperature on the microstructure and thermal expansion coefficient (CTE) of alloys was investigated. Experimental results showed that all ZrMgMo3O12p/2024Al composites sintered at 500–530?°C had a similar reticular structure and exhibited different linear expansion coefficients at 40–150?°C and 150–300?°C. The addition of 10?vol% ZrMgMo3O12 decreased the CTEs of 2024Al by ~ 16% at 40–150?°C and by ~ 7% at 150–300?°C. This addition also increased the hardness of 2024Al by ~ 23%. The density of the composites and the content of Al2Cu in ZrMgMo3O12p/2024Al increased as the sintering temperature increased. The CTEs of the composites decreased, whereas hardness increased. Thermal cycling from 40?°C to 300?°C caused the CTEs of the composites to decrease gradually and reach a stable value after seven cycles. The lowest CTEs of 15.4?×?10?6 °C?1 at 40–150?°C and 20.1?×?10?6 °C?1 at 150–300?°C were obtained after 10 thermal cycles and were reduced by ~ 32% and ~ 17%, respectively, compared with the CTE of the 2024Al. Among the current reinforcements, ZrMgMo3O12 negative expansion ceramics showed the highest efficiency to decrease the CTE of Al matrix composites.  相似文献   

18.
A new family of biodegradable amino‐acid‐based poly(ester amide)s (AA–PEAs) and amino‐acid‐based poly(ether ester amide)s (AA–PEEAs) consisting of reactive pendant functional groups (? COOH or ? NH2) were synthesized from unsaturated AA–PEAs and AA–PEEAs via a thiol–ene reaction in the presence of a radical initiator (2,2′‐azobisisobutyronitrile). The synthetic method was a one‐step reaction with near 100% yields under mild reaction conditions. The resulting functional AA–PEA and AA–PEEA polymers were characterized by Fourier transform infrared spectroscopy, NMR, and differential scanning calorimetry. These new functional AA–PEA and AA–PEEA derivatives had lower glass‐transition temperatures than the original unsaturated AA–PEA and AA–PEEA polymers, and their solubility in some organic solvents also improved. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
BACKGROUND: Poly(ether amide)s have been well studied in terms of improving the physical and thermal properties of aromatic polyamides. Poly(ether amide)s of high enough molecular weight to be useful for industrial purposes are generally difficult to prepare. The objective of this project was to introduce a simple and commercially feasible process to prepare poly(ether amide)s by a polymerization reaction at relatively low temperature. RESULTS: A series of poly(ether amide)s were prepared by direct polyamidation of p‐xylylene glycol with bis(ether nitrile)s via the Ritter reaction using concentrated H2SO4 in acetic acid. The synthesized poly(ether amide)s showed good solubility in polar aprotic solvents. The resultant poly(ether amide)s had inherent viscosities in the range 0.36–1.03 dL g?1. The glass transition temperatures of the poly(ether amide)s were determined using differential scanning calorimetry to be in the range 190–258 °C. Thermogravimetric analysis data for these polymers indicated the 10% weight loss temperatures to be in the range 290–390 °C in nitrogen atmosphere. CONCLUSION: The Ritter reaction was applied for the synthesis of a variety of poly(ether amide)s with moderate to high molecular weights. This procedure provides a simple polymerization process for the convenient preparation of poly(ether amide)s in high yield at room temperature. Copyright © 2009 Society of Chemical Industry  相似文献   

20.
Stearyl‐group‐terminated poly(ester amide) dendrimers [PEAD (R)3 and PEAD (R)8] and a poly(amino amide) dendrimer [PAMAM (R)4] were synthesized by the amidation of three, eight, and four terminated primary amino groups in poly(ester amine) dendrimers and a poly(amino amide) dendrimer with stearyl chloride. The dendrimer structures were characterized with IR and elemental analysis. The toluene solutions of the stearyl‐group‐terminated dendrimers were thermosensitive. Not only did gels form in PEAD (R)3–, PEAD (R)8–, and PAMAM (R)4–toluene solutions below 57.5, 60, and 49°C, respectively, but the content of toluene in the gels depended on the temperature, and a break existed at about 30°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 341–346, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号