首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a novel object–object affordance learning approach that enables intelligent robots to learn the interactive functionalities of objects from human demonstrations in everyday environments. Instead of considering a single object, we model the interactive motions between paired objects in a human–object–object way. The innate interaction-affordance knowledge of the paired objects are learned from a labeled training dataset that contains a set of relative motions of the paired objects, human actions, and object labels. The learned knowledge is represented with a Bayesian Network, and the network can be used to improve the recognition reliability of both objects and human actions and to generate proper manipulation motion for a robot if a pair of objects is recognized. This paper also presents an image-based visual servoing approach that uses the learned motion features of the affordance in interaction as the control goals to control a robot to perform manipulation tasks.  相似文献   

2.
In this paper we propose a novel approach for intuitive and natural physical human–robot interaction in cooperative tasks. Through initial learning by demonstration, robot behavior naturally evolves into a cooperative task, where the human co-worker is allowed to modify both the spatial course of motion as well as the speed of execution at any stage. The main feature of the proposed adaptation scheme is that the robot adjusts its stiffness in path operational space, defined with a Frenet–Serret frame. Furthermore, the required dynamic capabilities of the robot are obtained by decoupling the robot dynamics in operational space, which is attached to the desired trajectory. Speed-scaled dynamic motion primitives are applied for the underlying task representation. The combination allows a human co-worker in a cooperative task to be less precise in parts of the task that require high precision, as the precision aspect is learned and provided by the robot. The user can also freely change the speed and/or the trajectory by simply applying force to the robot. The proposed scheme was experimentally validated on three illustrative tasks. The first task demonstrates novel two-stage learning by demonstration, where the spatial part of the trajectory is demonstrated independently from the velocity part. The second task shows how parts of the trajectory can be rapidly and significantly changed in one execution. The final experiment shows two Kuka LWR-4 robots in a bi-manual setting cooperating with a human while carrying an object.  相似文献   

3.
This paper describes a syntactic approach to imitation learning that captures important task structures in the form of probabilistic activity grammars from a reasonably small number of samples under noisy conditions. We show that these learned grammars can be recursively applied to help recognize unforeseen, more complicated tasks that share underlying structures. The grammars enforce an observation to be consistent with the previously observed behaviors which can correct unexpected, out-of-context actions due to errors of the observer and/or demonstrator. To achieve this goal, our method (1) actively searches for frequently occurring action symbols that are subsets of input samples to uncover the hierarchical structure of the demonstration, and (2) considers the uncertainties of input symbols due to imperfect low-level detectors.We evaluate the proposed method using both synthetic data and two sets of real-world humanoid robot experiments. In our Towers of Hanoi experiment, the robot learns the important constraints of the puzzle after observing demonstrators solving it. In our Dance Imitation experiment, the robot learns 3 types of dances from human demonstrations. The results suggest that under reasonable amount of noise, our method is capable of capturing the reusable task structures and generalizing them to cope with recursions.  相似文献   

4.
In an environment where robots coexist with humans, mobile robots should be human-aware and comply with humans' behavioural norms so as to not disturb humans' personal space and activities. In this work, we propose an inverse reinforcement learning-based time-dependent A* planner for human-aware robot navigation with local vision. In this method, the planning process of time-dependent A* is regarded as a Markov decision process and the cost function of the time-dependent A* is learned using the inverse reinforcement learning via capturing humans' demonstration trajectories. With this method, a robot can plan a path that complies with humans' behaviour patterns and the robot's kinematics. When constructing feature vectors of the cost function, considering the local vision characteristics, we propose a visual coverage feature for enabling robots to learn from how humans move in a limited visual field. The effectiveness of the proposed method has been validated by experiments in real-world scenarios: using this approach robots can effectively mimic human motion patterns when avoiding pedestrians; furthermore, in a limited visual field, robots can learn to choose a path that enables them to have the larger visual coverage which shows a better navigation performance.  相似文献   

5.
In this article, a learning framework that enables robotic arms to replicate new skills from human demonstration is proposed. The learning framework makes use of online human motion data acquired using wearable devices as an interactive interface for providing the anticipated motion to the robot in an efficient and user-friendly way. This approach offers human tutors the ability to control all joints of the robotic manipulator in real-time and able to achieve complex manipulation. The robotic manipulator is controlled remotely with our low-cost wearable devices for easy calibration and continuous motion mapping. We believe that our approach might lead to improving the human-robot skill learning, adaptability, and sensitivity of the proposed human-robot interaction for flexible task execution and thereby giving room for skill transfer and repeatability without complex coding skills.  相似文献   

6.
This paper proposes an end-to-end learning from demonstration framework for teaching force-based manipulation tasks to robots. The strengths of this work are manyfold. First, we deal with the problem of learning through force perceptions exclusively. Second, we propose to exploit haptic feedback both as a means for improving teacher demonstrations and as a human–robot interaction tool, establishing a bidirectional communication channel between the teacher and the robot, in contrast to the works using kinesthetic teaching. Third, we address the well-known what to imitate? problem from a different point of view, based on the mutual information between perceptions and actions. Lastly, the teacher’s demonstrations are encoded using a Hidden Markov Model, and the robot execution phase is developed by implementing a modified version of Gaussian Mixture Regression that uses implicit temporal information from the probabilistic model, needed when tackling tasks with ambiguous perceptions. Experimental results show that the robot is able to learn and reproduce two different manipulation tasks, with a performance comparable to the teacher’s one.  相似文献   

7.
The control of soft continuum robots is challenging owing to their mechanical elasticity and complex dynamics. An additional challenge emerges when we want to apply Learning from Demonstration (LfD) and need to collect necessary demonstrations due to the inherent control difficulty. In this paper, we provide a multi-level architecture from low-level control to high-level motion planning for the Bionic Handling Assistant (BHA) robot. We deploy learning across all levels to enable the application of LfD for a real-world manipulation task. To record the demonstrations, an actively compliant controller is used. A variant of dynamical systems' application that are able to encode both position and orientation then maps the recorded 6D end-effector pose data into a virtual attractor space. A recent LfD method encodes the pose attractors within the same model for point-to-point motion planning. In the proposed architecture, hybrid models that combine an analytical approach and machine learning techniques are used to overcome the inherent slow dynamics and model imprecision of the BHA. The performance and generalization capability of the proposed multi-level approach are evaluated in simulation and with the real BHA robot in an apple-picking scenario which requires high accuracy to control the pose of the robot's end-effector.  相似文献   

8.
Human–Robot Collaboration (HRC) is a term used to describe tasks in which robots and humans work together to achieve a goal. Unlike traditional industrial robots, collaborative robots need to be adaptive; able to alter their approach to better suit the situation and the needs of the human partner. As traditional programming techniques can struggle with the complexity required, an emerging approach is to learn a skill by observing human demonstration and imitating the motions; commonly known as Learning from Demonstration (LfD). In this work, we present a LfD methodology that combines an ensemble machine learning algorithm (i.e. Random Forest (RF)) with stochastic regression, using haptic information captured from human demonstration. The capabilities of the proposed method are evaluated using two collaborative tasks; co-manipulation of an object (where the human provides the guidance but the robot handles the objects weight) and collaborative assembly of simple interlocking parts. The proposed method is shown to be capable of imitation learning; interpreting human actions and producing equivalent robot motion across a diverse range of initial and final conditions. After verifying that ensemble machine learning can be utilised for real robotics problems, we propose a further extension utilising Weighted Random Forest (WRF) that attaches weights to each tree based on its performance. It is then shown that the WRF approach outperforms RF in HRC tasks.  相似文献   

9.
Given a collection of parameterized multi-robot controllers associated with individual behaviors designed for particular tasks, this paper considers the problem of how to sequence and instantiate the behaviors for the purpose of completing a more complex, overarching mission. In addition, uncertainties about the environment or even the mission specifications may require the robots to learn, in a cooperative manner, how best to sequence the behaviors. In this paper, we approach this problem by using reinforcement learning to approximate the solution to the computationally intractable sequencing problem, combined with an online gradient descent approach to selecting the individual behavior parameters, while the transitions among behaviors are triggered automatically when the behaviors have reached a desired performance level relative to a task performance cost. To illustrate the effectiveness of the proposed method, it is implemented on a team of differential-drive robots for solving two different missions, namely, convoy protection and object manipulation.  相似文献   

10.
ABSTRACT

The recent demographic trend across developed nations shows a dramatic increase in the aging population, fallen fertility rates and a shortage of caregivers. Hence, the demand for service robots to assist with dressing which is an essential Activity of Daily Living (ADL) is increasing rapidly. Robotic Clothing Assistance is a challenging task since the robot has to deal with two demanding tasks simultaneously, (a) non-rigid and highly flexible cloth manipulation and (b) safe human–robot interaction while assisting humans whose posture may vary during the task. On the other hand, humans can deal with these tasks rather easily. In this paper, we propose a framework for robotic clothing assistance by imitation learning from a human demonstration to a compliant dual-arm robot. In this framework, we divide the dressing task into three phases, i.e. reaching phase, arm dressing phase, and body dressing phase. We model the arm dressing phase as a global trajectory modification using Dynamic Movement Primitives (DMP), while we model the body dressing phase toward a local trajectory modification applying Bayesian Gaussian Process Latent Variable Model (BGPLVM). We show that the proposed framework developed towards assisting the elderly is generalizable to various people and successfully performs a sleeveless shirt dressing task. We also present participants feedback on public demonstration at the International Robot Exhibition (iREX) 2017. To our knowledge, this is the first work performing a full dressing of a sleeveless shirt on a human subject with a humanoid robot.  相似文献   

11.
There has been growing interest in motion planning problems for mobile robots. In this field, the main research is to generate a motion for a specific robot and task without previously acquired motions. However it is too wasteful not to use hard-earned acquired motions for other tasks. Here, we focus on a mechanism of reusing acquired motion knowledge and study a motion planning system able to generate and reuse motion knowledge. In this paper, we adopt a tree-based representation for expressing knowledge of motion, and propose a hierarchical knowledge for realizing a reuse mechanism. We construct a motion planning system using hierarchical knowledge as motion knowledge and using genetic programming as a learning method. We apply a proposed method for the gait generation task of a six-legged locomotion robot and show its availability with computer simulation.  相似文献   

12.
In order to properly function in real-world environments, the gait of a humanoid robot must be able to adapt to new situations as well as to deal with unexpected perturbations. A promising research direction is the modular generation of movements that results from the combination of a set of basic primitives. In this paper, we present a robot control framework that provides adaptive biped locomotion by combining the modulation of dynamic movement primitives (DMPs) with rhythm and phase coordination. The first objective is to explore the use of rhythmic movement primitives for generating biped locomotion from human demonstrations. The second objective is to evaluate how the proposed framework can be used to generalize and adapt the human demonstrations by adjusting a few open control parameters of the learned model. This paper contributes with a particular view into the problem of adaptive locomotion by addressing three aspects that, in the specific context of biped robots, have not received much attention. First, the demonstrations examples are extracted from human gaits in which the human stance foot will be constrained to remain in flat contact with the ground, forcing the “bent-knee” at all times in contrast with the typical straight-legged style. Second, this paper addresses the important concept of generalization from a single demonstration. Third, a clear departure is assumed from the classical control that forces the robot’s motion to follow a predefined fixed timing into a more event-based controller. The applicability of the proposed control architecture is demonstrated by numerical simulations, focusing on the adaptation of the robot’s gait pattern to irregularities on the ground surface, stepping over obstacles and, at the same time, on the tolerance to external disturbances.  相似文献   

13.
Trajectory learning is a fundamental component in a robot Programming by Demonstration (PbD) system, where often the very purpose of the demonstration is to teach complex manipulation patterns. However, human demonstrations are inevitably noisy and inconsistent. This paper highlights the trajectory learning component of a PbD system for manipulation tasks encompassing the ability to cluster, select, and approximate human demonstrated trajectories. The proposed technique provides some advantages with respect to alternative approaches and is suitable for learning from both individual and multiple user demonstrations.  相似文献   

14.
A visuo-haptic augmented reality system is presented for object manipulation and task learning from human demonstration. The proposed system consists of a desktop augmented reality setup where users operate a haptic device for object interaction. Users of the haptic device are not co-located with the environment where real objects are present. A three degrees of freedom haptic device, providing force feedback, is adopted for object interaction by pushing, selection, translation and rotation. The system also supports physics-based animation of rigid bodies. Virtual objects are simulated in a physically plausible manner and seem to coexist with real objects in the augmented reality space. Algorithms for calibration, object recognition, registration and haptic rendering have been developed. Automatic model-based object recognition and registration are performed from 3D range data acquired by a moving laser scanner mounted on a robot arm. Several experiments have been performed to evaluate the augmented reality system in both single-user and collaborative tasks. Moreover, the potential of the system for programming robot manipulation tasks by demonstration is investigated. Experiments show that a precedence graph, encoding the sequential structure of the task, can be successfully extracted from multiple user demonstrations and that the learned task can be executed by a robot system.  相似文献   

15.
Automatically observing and understanding human activities is one of the big challenges in computer vision research. Among the potential fields of application are areas such as robotics, human computer interaction or medical research. In this article we present our work on unintrusive observation and interpretation of human activities for the precise recognition of human fullbody motions. The presented system requires no more than three cameras and is capable of tracking a large spectrum of motions in a wide variety of scenarios. This includes scenarios where the subject is partially occluded, where it manipulates objects as part of its activities, or where it interacts with the environment or other humans. Our system is self-training, i.e. it is capable of learning models of human motion over time. These are used both to improve the prediction of human dynamics and to provide the basis for the recognition and interpretation of observed activities. The accuracy and robustness obtained by our system is the combined result of several contributions. By taking an anthropometric human model and optimizing it towards use in a probabilistic tracking framework we obtain a detailed biomechanical representation of human shape, posture and motion. Furthermore, we introduce a sophisticated hierarchical sampling strategy for tracking that is embedded in a probabilistic framework and outperforms state-of-the-art Bayesian methods. We then show how to track complex manipulation activities in everyday environments using a combination of learned human appearance models and implicit environment models. Finally, we discuss a locally consistent representation of human motion that we use as a basis for learning environment- and task-specific motion models. All methods presented in this article have been subject to extensive experimental evaluation on today??s benchmarks and several challenging sequences ranging from athletic exercises to ergonomic case studies to everyday manipulation tasks in a kitchen environment.  相似文献   

16.
王童  李骜  宋海荦  刘伟  王明会 《控制与决策》2022,37(11):2799-2807
针对现有基于深度强化学习(deep reinforcement learning, DRL)的分层导航方法在包含长廊、死角等结构的复杂环境下导航效果不佳的问题,提出一种基于option-based分层深度强化学习(hierarchical deep reinforcement learning, HDRL)的移动机器人导航方法.该方法的模型框架分为高层和低层两部分,其中低层的避障和目标驱动控制模型分别实现避障和目标接近两种行为策略,高层的行为选择模型可自动学习稳定、可靠的行为选择策略,从而有效避免对人为设计调控规则的依赖.此外,所提出方法通过对避障控制模型进行优化训练,使学习到的避障策略更加适用于复杂环境下的导航任务.在与现有DRL方法的对比实验中,所提出方法在全部仿真测试环境中均取得最高的导航成功率,同时在其他指标上也具有整体优势,表明所提出方法可有效解决复杂环境下导航效果不佳的问题,且具有较强的泛化能力.此外,真实环境下的测试进一步验证了所提出方法的潜在应用价值.  相似文献   

17.
Hierarchical reinforcement learning (RL) algorithms can learn a policy faster than standard RL algorithms. However, the applicability of hierarchical RL algorithms is limited by the fact that the task decomposition has to be performed in advance by the human designer. We propose a Lamarckian evolutionary approach for automatic development of the learning structure in hierarchical RL. The proposed method combines the MAXQ hierarchical RL method and genetic programming (GP). In the MAXQ framework, a subtask can optimize the policy independently of its parent task's policy, which makes it possible to reuse learned policies of the subtasks. In the proposed method, the MAXQ method learns the policy based on the task hierarchies obtained by GP, while the GP explores the appropriate hierarchies using the result of the MAXQ method. To show the validity of the proposed method, we have performed simulation experiments for a foraging task in three different environmental settings. The results show strong interconnection between the obtained learning structures and the given task environments. The main conclusion of the experiments is that the GP can find a minimal strategy, i.e., a hierarchy that minimizes the number of primitive subtasks that can be executed for each type of situation. The experimental results for the most challenging environment also show that the policies of the subtasks can continue to improve, even after the structure of the hierarchy has been evolutionary stabilized, as an effect of Lamarckian mechanisms  相似文献   

18.
Robot learning by demonstration is key to bringing robots into daily social environments to interact with and learn from human and other agents. However, teaching a robot to acquire new knowledge is a tedious and repetitive process and often restrictive to a specific setup of the environment. We propose a template-based learning framework for robot learning by demonstration to address both generalisation and adaptability. This novel framework is based upon a one-shot learning model integrated with spectral clustering and an online learning model to learn and adapt actions in similar scenarios. A set of statistical experiments is used to benchmark the framework components and shows that this approach requires no extensive training for generalisation and can adapt to environmental changes flexibly. Two real-world applications of an iCub humanoid robot playing the tic-tac-toe game and soldering a circuit board are used to demonstrate the relative merits of the framework.  相似文献   

19.
Physics-based simulation is increasingly important in virtual manufacturing for product assembly and disassembly operations. This work explores potential benefits of physics-based modeling for automatic learning of assembly tasks and for intelligent disassembly planning in desktop virtual reality. The paper shows how realistic physical animation of manipulation tasks can be exploited for learning sequential constraints from user demonstrations. In particular, a method is proposed where information about physical interaction is used to discover task precedences and to reason about task similarities. A second contribution of the paper is the application of physics-based modeling to the problem of disassembly sequence planning. A novel approach is described to find all physically admissible subassemblies in which a set of rigid objects can be disassembled. Moreover, efficient strategies are presented aimed at reducing the computational time required for automatic disassembly planning. The proposed strategies take into account precedence relations arising from user assembly demonstrations as well as geometrical clustering. A motion planning technique has also been developed to generate non-destructive disassembly paths in a query-based approach. Experiments have been performed in an interactive virtual environment including a dataglove and motion tracker that allows realistic object manipulation and grasping.  相似文献   

20.
We propose an imitation learning methodology that allows robots to seamlessly retrieve and pass objects to and from human users. Instead of hand-coding interaction parameters, we extract relevant information such as joint correlations and spatial relationships from a single task demonstration of two humans. At the center of our approach is an interaction model that enables a robot to generalize an observed demonstration spatially and temporally to new situations. To this end, we propose a data-driven method for generating interaction meshes that link both interaction partners to the manipulated object. The feasibility of the approach is evaluated in a within user study which shows that human–human task demonstration can lead to more natural and intuitive interactions with the robot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号