首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper proposes an optimal impedance control method for a variable stiffness actuator (VSA), in which a variable stiffness mechanism and an actuator are aligned in series. First, we introduce a circuit expression of the robotic system and provide a unified framework to determine an optimal index of robots driven by VSAs, irrespective of the presence or absence of the environment. Next, we design a torque controller for a one-degree-of-freedom (DOF) robot and find the optimal condition of the stiffness in the VSA for a given task. Then, we design a stiffness control law for the VSA exploiting the intrinsic indivisible property between motion and passive impedance. This stiffness control law adaptively tunes the passive stiffness to minimize the energy consumption without defining any explicit desired impedance, which is usually required in impedance controllers. The stability of the closed loop system is proved using Lyapunov’s analysis. Simulations and experimental results validate the effectiveness of the proposed method and the robustness in response to parameter changes.  相似文献   

2.
This paper proposes a mechanism that adjusts mechanical stiffness around a robot joint and utilizes whole elastic energy of an elastic element. The proposed mechanism consists of a lead screw mechanism, a linear spring, and wires. The lead screw mechanism moves a nut of the lead screw mechanism to change a bending point of the wire, which connects the linear spring and the lead screw mechanism. Then, moment arm and ratio of joint rotation to extension of the spring are varied. As a result, joint stiffness is adjusted. Because this mechanism does not apply tension to the spring for the stiffness adjustment, whole elastic energy of the spring can be utilized for joint rotation. This utilization can minimize weight and size of the elastic element. Additional advantages of the proposed mechanism are mechanical simplicity, wide range of adjustable stiffness, and no energy consumption for keeping constant stiffness. We analyze characteristics of the proposed mechanism and compare with other mechanisms in detail. Device development and experimental results are provided for demonstrating the effectiveness of the proposed mechanism.  相似文献   

3.
Variable stiffness actuator (VSA) can significantly improve the dynamic performance of robots and ensure safety in human robot interaction. In this paper, a novel structure-controlled VSA which achieves a lower minimal stiffness while the size and load capacity remain unchanged is introduced. Stiffness variation is implemented by changing the effective length of parallel-assembled-folded serial leaf springs presented in this paper, which makes the adjustment of stiffness easier and driven by an independent motor. A modified analytical model of joint stiffness is built, which takes the gap between leaf springs and rollers into consideration. Experiments prove that the modified model is more accurate comparing with the ideal model which ignores the gap. Further analyses show that the gap can even make serious impacts on leaf spring-based structure-controlled VSA in other performances such as deformability and energy capacity.  相似文献   

4.
Li  Ruiqi  Yang  Zhijun  Cai  Bingyu 《Microsystem Technologies》2023,29(3):377-385
Microsystem Technologies - Various amplification mechanisms have been developed to extend the travel range of compliant mechanisms. For the serial design of these mechanisms and the neglection of...  相似文献   

5.
假肢手的动作数量与轻量化之间存在矛盾关系,为兼顾两者之间的平衡,满足假肢手多动作和轻量化的要求,该研究通过分析人手的16种日常抓取动作,设计了一种合理的电机驱动结构。该结构在四指中应用了多关节同时屈曲传动,在拇指中应用了定轨迹适应性传动,掌骨使用可自动切换为弧面和平面的对称弹性串联驱动式传动,以及配置五指的自动伸展,将这些机能融合在假肢手中,仅用3个电机实现了11 种假肢手动作,达到了132.1 g的轻量化设计。该文还通过肌电信号结合神经网络算法,实现了假肢手直觉控制,并验证了其具有良好的抓取稳定性和操作性。  相似文献   

6.
7.
A passive walking robot can achieve a smooth gait without any sensory feedback while walking down a slope. This phenomenon is based on the transformation of potential energy into kinetic energy in the legs. Although the entrainment is observed in a passive gait motion, there is a possibility that the passive gait cannot be achieved in the case of variations in physical parameters, initial conditions, and disturbances. To realize a robust passive gait against variations in physical parameters, this paper proposes a passive gait system that possesses a joint stiffness adjustment. Targeting a compass model, this paper investigates the effectiveness of the proposed method for a passive gait against variations in slope angle and hip joint mass through simulation. As a result, the simulation results show that this method especially has strong robustness against the slope angle variation.  相似文献   

8.
工程实际中的被控对象都具有明显的有限频域特性,但目前的物理人机交互研究大多是针对全频域性能指标来设计阻抗控制器,由此得到的控制器往往失之保守.本文针对绳牵引串联弹性驱动下的人机物理交互问题,采用有限频域性能约束方法来提升系统在设定频段的刚度控制性能.首先,分析绳牵引串联弹性驱动的刚度控制目标并将其转化成有限频域性能约束下的H∞控制问题.其次,根据广义Kalman-Yakubovich-Popov (KYP)引理,将有限频域性能约束转化成矩阵不等式条件,进而分解变换成有关全信息控制器和待求的静态输出反馈控制器的条件.然后,求解出一个满足条件的全信息控制器,并迭代优化得到输出反馈控制器.仿真和实验结果都表明,本文方法在设定频段取得了更加精确的刚度控制效果.  相似文献   

9.
A series elastic actuator (SEA) is a powerful device in the area of human-machine integration, but it still suffers from difficult position control issues. Therefore, in this paper, an efficient approach is proposed to solve this problem. The approach design is divided into two steps: feedback linearization (FL) and global sliding mode (GSM) controller design. The bounded analysis is presented and global asymptotic convergence is analytically proven. Simulation and experiment results illustrate the effectiveness of the proposed scheme.   相似文献   

10.
The problem of robust control applied to adjust the configuration of an ankle prosthesis based on disturbance estimation has been addressed in this study. Active disturbance rejection control was the paradigm used for controlling the robotic prosthesis by means of a direct active estimation. Based on this active estimation, the robust controller implemented the disturbance cancellation providing a fast converge to the origin of the tracking error. The uncertainties affecting the prosthesis dynamics were identified by a high‐order extended state high gain observer. This identification was used to force the tracking between the actual position and force needed in the ankle prosthesis and some reference values obtained by a biomechanical gait cycle analysis. Therefore, the estimated states were used to implement a robust output feedback controller that was effective to reject actively the perturbations. This rejection implemented within the controller forced the trajectory tracking to a small vicinity of the origin. A strategy based on composite Lyapunov function served to prove that tracking problem for the prosthesis was successfully solved despite the switching nature of the gait cycle. The controller was implemented in numerical simulations for showing the convergence of the tracking error. The convergence of this tracking error to the region around the origin was obtained within the first second of simulation.  相似文献   

11.
Abstract

Conventional hydraulic actuators can generate a strong force due to high pressure. However, most of them are heavy and hard because they are made of metal. It is difficult to use such actuators in robots required to be as light as possible. Moreover, the joint mechanisms of these actuators have problems with intrinsic safety and robustness because the compliance is acquired using delicate sensors and advanced controls. Therefore, we propose a new rotational-compliant mechanism that allows the coexistence of strong force and compliance. The proposed mechanism has compliance in an active rotational direction and in two directions orthogonal to it. To realize this mechanism, we have developed a Hydraulic Artificial Muscle (HAM), which is very lightweight and able to generate strong force. Furthermore, the HAM has compliance without any advanced control. By exploiting the characteristics of the HAM, the function of the proposed mechanism can be realized even in conditions of compact dimensions. In this paper, by constructing a simple experimental system that imitates the proposed mechanism, and by modeling it, we verify its compliance from both a theoretical and an experimental point of view. We demonstrate that the mechanism has compliance in the three rotational directions.  相似文献   

12.
针对常规直流稳压电源的输出电压精度不高和调节较为繁琐的缺点,设计了一款高精度数控可调直流稳压线性电源。该电源输出电压0~30V可调,输出电流最大值可达4A。通过输出电压/电流取样电路、差动放大电路及电压/电流调整电路等所构成的闭环负反馈环节和软件上的双线性插值误差补偿方法,提高了输出电压的精度。该电源输出电压和电流的最大值既可通过旋转编码器和实体按键进行调节,也可以通过在所用触控液晶模块中创建的虚拟键盘直接进行设置,操作简便。实际测试结果表明,该电源的输出电压精度高,12V输出时的负载调整率仅为0.15%,且参数设置操作简便,可满足一般教学、科研的应用需求。  相似文献   

13.
Human-robot interaction (HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator (SEA) provides inherent compliance, safety and further benefits for HRI, but the introduced elastic element also brings control difficulties. In this paper, we address the stiffness rendering problem for a cable-driven SEA system, to achieve either low stiffness for good transparency or high stiffness bigger than the physical spring constant, and to assess the rendering accuracy with quantified metrics. By taking a velocity-sourced model of the motor, a cascaded velocity-torque-impedance control structure is established. To achieve high fidelity torque control, the 2-DOF (degree of freedom) stabilizing control method together with a compensator has been used to handle the competing requirements on tracking performance, noise and disturbance rejection, and energy optimization in the cable-driven SEA system. The conventional passivity requirement for HRI usually leads to a conservative design of the impedance controller, and the rendered stiffness cannot go higher than the physical spring constant. By adding a phase-lead compensator into the impedance controller, the stiffness rendering capability was augmented with guaranteed relaxed passivity. Extensive simulations and experiments have been performed, and the virtual stiffness has been rendered in the extended range of 0.1 to 2.0 times of the physical spring constant with guaranteed relaxed passivity for physical humanrobot interaction below 5 Hz. Quantified metrics also verified good rendering accuracy.   相似文献   

14.
《Advanced Robotics》2013,27(9):863-878
Fault tolerance is an important aspect in the development of control systems for multi-legged robots since a failure in a leg may lead to a severe loss of static stability of a gait. In this paper, an algorithm for tolerating a locked joint failure is described in gait planning for a quadruped robot with crab walking. A locked joint failure is one for which a joint cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but legged robots have fault tolerance capability to continue walking maintaining static stability. A strategy for fault-tolerant gaits is described and, especially, a periodic gait is presented for crab walking of a quadruped. The leg sequence and the formula of the stride length are analytically driven based on gait study and robot kinematics. The adjustment procedure from a normal gait to the proposed fault-tolerant crab gait is shown to demonstrate the applicability of the proposed scheme.  相似文献   

15.
The absolute nodal coordinate formulation (ANCF) has been widely applied for large deformation analysis in flexible multibody dynamics. Although the formulation led to stable solutions for time integration under large rotations and deformations, excessive time consumption was recorded. The nonlinear relationship between the deformation and the internal force accounted for repeated adjustment to the force equilibrium state as the structure deformed. In this research, an equivalent model of the ANCF beam structure was constructed. The stiffness evaluation method was applied in an element-wise manner. In this model, the irrelevant parts were separated from those that relate to the displacements and design parameters enabling efficient updates of internal forces to achieve force equilibrium. Therefore, by using this model, optimization problems, in which displacements as well as design parameters keep changing can be efficiently approached. To verify the proposed method, two examples of optimization problems related to a free-falling pendulum and a slider-crank mechanism are demonstrated.  相似文献   

16.
《Ergonomics》2012,55(12):1598-1616
Abstract

In a socio-technical work domain, humans, device interfaces and artefacts all affect transformations of information flow. Such transformations, which may involve a change of auditory to visual information & vice versa or alter semantic approximations into spatial proximities from instruments readings, are generally not restricted to solely human cognition. This paper applies a joint cognitive system approach to explore a socio-technical system. A systems ergonomics perspective is achieved by applying a multi-layered division to transformations of information between, and within, human and technical agents. The approach uses the Functional Resonance Analysis Method (FRAM), but abandons the traditional boundary between medium and agent in favour of accepting aircraft systems and artefacts as agents, with their own functional properties and relationships. The joint cognitive system perspective in developing the FRAM model allows an understanding of the effects of task and information propagation, and eventual distributed criticalities, taking advantage of the functional properties of the system, as described in a case study related to the cockpit environment of a DC-9 aircraft.

Practitioner Summary: This research presents the application of one systemic method to understand work systems and performance variability in relation to the transformation of information within a flight deck for a specific phase of flight. By using a joint cognitive systems approach both retrospective and prospective investigation of cockpit challenges will be better understood.

Abbreviations: ATC: air traffic control; ATCO: air traffic controller; ATM: air traffic management; CSE: cognitive systems engineering; DSA: distributed situation awareness; FMS: flight management system; FMV: FRAM model visualize; FRAM: functional resonance analysis method; GF: generalised function; GW: gross weight; HFACS: human factors analysis and classification system; JCS: joint cognitive systems; PF: pilot flying; PNF: pilot not flying; SA: situation awareness; SME: subject matter expert; STAMP: systems theoretic accident model and processes; VBA: visual basic for applications; WAD: work-as-done; WAI: work-as-imagined; ZFW: zero fuel weight  相似文献   

17.
This paper presents a new design of mobile micro manipulation system for robotic micro assembly where a compliant piezoelectric actuator based micro gripper is designed for handling the miniature parts and compensation of misalignment during peg-in-hole assembly is done because piezoelectric actuator has capability of producing the displacement in micron range and generates high force instantaneously. This adjusts the misalignment of peg during robotic micro assembly. The throughput/speed of mobile micro manipulation system is found for picking and placing the peg from one hole to next hole position. An analysis of piezoelectric actuator based micro gripper has been carried out where voltage is controlled through a proportional-derivative (PD) controller. By developing a prototype, it is demonstrated that compliant piezoelectric actuator based micro gripper is capable of handling the peg-in-hole assembly task in a mobile micro manipulation system.  相似文献   

18.
Explicit expressions for gradients of residual functionals are obtained for the identification of the parameters of elastic dynamic deformation of multicomponent bodies by gradient methods. The technique is based on the solutions of conjugate problems found using the theory of optimal control over states of multicomponent distributed systems that is developed by the authors. Translated from Kibernetika i Sistemnyi Analiz, No. 3, pp. 75–97, May–June 2OO9.  相似文献   

19.
当前,苹果采摘机器人大多选用工业机械臂,关节控制采用电机加减速装置来提高控制精度、增大驱动力矩,这无疑会增加系统的复杂性、成本以及降低系统控制性能;为改善这种情况,给出一种基于直流力矩电动机加谐波减速器的苹果采摘机器人关节控制方案,系统可大大减小驱动机构体积,提高系统刚性,实现低速稳定的精准控制;MATLAB环境下仿真结果表明,在0.5°和60°的阶跃给定下,系统超调量和稳态误差均为0;在幅值为5°,频率为3.14rad/s正弦信号输入下,系统输出能够完全跟随输入;系统控制精度达到了苹果采摘要求,为后续简化采摘机器人机械臂结构、甚至实现直接驱动提供了有力的理论支持。  相似文献   

20.
A novel model integrating transformation and decomposition techniques is proposed to construct a manufacturing system with joint production lines as a multi-state manufacturing network (MMN). Reworking actions and different defect rates of workstations are both taken into account in the MMN model. The capacity analysis and performance evaluation are implemented accordingly. In particular, a technique in terms of ‘prior-set’ is developed to deal with multiple reworking actions. Subsequently, two simple algorithms are proposed to generate all minimal capacity vectors that workstations should provide to satisfy a given demand. In terms of such vectors, the probability of demand satisfaction can be derived. Such a probability is referred to as the system reliability, which is a performance indicator to state the capability of the MMN. According to each specific minimal capacity vector, the production manager may further determine a better strategy to produce products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号