首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(5):797-804
The capacity of a calcined hydrotalcite and a natural zeolite to remove U(VI) chemical species from both acidic and basic aqueous systems has been investigated. The U(VI) uptake by the calcined hydrotalcite and the natural zeolite was determined to be from 5 to 200 µmolmL?1 and from 2 to 10 µmolmL?1, respectively. Uranium was measured using UV-Vis spectroscopy in the remaining solutions. The U(VI) adsorption of both materials was higher in the acidic aqueous system. Independent of the pH of the aqueous media, the [UO2(CO3)3]4? species play an important role in the regeneration of the original crystalline structure of the HT.  相似文献   

2.
Abstract

Macaúba (Acronomia aculeata) is a palm tree native of the Brazilian savanna and a valuable renewable source of vegetable oil for human consumption and biodiesel production. In this study, the potentiality of the macaúba endocarp for biochar (BC) production was demonstrated. Moisture, density, elemental and molecular composition, along with TGA, FTIR, and XRD analyses were performed for the endocarp. Adsorption of uranyl ions, U(VI), from aqueous solutions was studied by batch technique using BC produced by slow pyrolysis of the endocarp at 350?°C (BC350). The effect of contact time on the removal of U(VI) by BC350 was evaluated. Linear and non-linear kinetics models were employed and the best fit for the experimental data was achieved for pseudo-first order non-linear model. The adsorption equilibrium was attained after 180?min of contact time and the equilibrium adsorption capacity achieved was of 400?mg g?1. Finally, BC350 was characterized by SEM, FTIR, WDXRF, and XRD techniques.  相似文献   

3.
Acrylic monomer based terpolymer/montmorillonite nanocomposite hydrogels (NH-MMTs) synthesized using 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA), 2-acrylamido-2-methlypropane sulfonic acid (AMPS) and 2-hydroxyethyl methacrylate (HEMA) in the aqueous montmorillonite (MMT) suspension were employed as adsorbents for U(VI) removal from aqueous solutions. Adsorption efficiency of the NH-MMTs was strongly enhanced by increasing pH in the range of 3–6. Adsorption capacity of the NHs increased with the MMT weight ratio up to 1% and the complete removal of U(VI) from 1 mmol/L aqueous solutions was achieved by 2 g/L polymer but further increase of MMT up to 6% caused a gradual decrease in adsorption percentage up to 57%. Nearly 98% of U(VI) loaded on the adsorbents could be recovered by 0.1 M HNO3. Consecutive adsorption/desorption cycles showed that the NH-MMTs are re-usable. Kinetic results were analyzed using Paterson's and Nernst Planck approximation's based on homogeneous solid phase diffusion (HSPD). Experimental data were fitted to equilibrium isotherm models, Langmuir, Freundlich, Dubinin–Radushkevich and Temkin. SEM, and FTIR analysis of bare and U(VI) loaded adsorbents were used to elucidate adsorption mechanisms. The results showed that the NH-MMTs tested in this study are very promising for the recovery of U(VI) from water.  相似文献   

4.
《分离科学与技术》2012,47(13):3563-3581
Abstract

The adsorption of Cr(VI) from aqueous solution by Turkish vermiculite were investigated in terms of equilibrium, kinetics, and thermodynamics. Experimental parameters affecting the removal process such as pH of solution, adsorbent dosage, contact time, and temperature were studied. Equilibrium adsorption data were evaluated by Langmuir, Freundlich and Dubinin–Radushkevich (D–R) isotherm models. Langmuir model fitted the equilibrium data better than the Freundlich model. The monolayer adsorption capacity of Turkish vermiculite for Cr(VI) was found to be 87.7 mg/g at pH 1.5, 10 g/L adsorbent dosage and 20°C. The mean free energy of adsorption (5.9 kJ/mol) obtained from the D–R isotherm indicated that the type of sorption was essentially physical. The calculated thermodynamic parameters (ΔG o , ΔH o and ΔS o ) showed that the removal of Cr(VI) ions from aqueous solution by the vermiculite was feasible, spontaneous and exothermic at 20–50°C. Equilibrium data were also tested using the adsorption kinetic models and the results showed that the adsorption processes of Cr(VI) onto Turkish vermiculite followed well pseudo-second order kinetics.  相似文献   

5.
《分离科学与技术》2012,47(11-12):3200-3220
Abstract

Grainless stalk of corn (GLSC) was tested for removal of Cr(VI) and Cr(III) from aqueous solution at different pH, contact time, temperature, and chromium/adsorbent ratio. The results show that the optimum pH for removal of Cr(VI) is 0.84, while the optimum pH for removal of Cr(III) is 4.6. The adsorption processes of both Cr(VI) and Cr(III) onto GLSC were found to follow first-order kinetics. Values of k ads of 0.037 and 0.018 min?1 were obtained for Cr(VI) and Cr(III), respectively. The adsorption capacity of GLSC was calculated from the Langmuir isotherm as 7.1 mg g?1 at pH 0.84 for Cr(VI), and as 7.3 mg g?1 at pH 4.6 for Cr(III), at 20°C. At the optimum pH for Cr(VI) removal, Cr(VI) reduces to Cr(III). EPR spectroscopy shows the presence of Cr(V) + Cr(III)-bound-GLSC at short contact times and adsorbed Cr(III) as the final oxidation state of Cr(VI)-treated GLSC. The results indicate that, at pH ≈ 1, GLSC can completely remove Cr(VI) from aqueous solution through an adsorption-coupled reduction mechanism to yield adsorbed Cr(III) and the less toxic aqueous Cr(III), which can be further removed at pH 4.6.  相似文献   

6.
Silica modified with rhodamine-B has been synthesized, characterized and used for solid phase extraction (SPE) of uranium(VI) (U(VI)) from aqueous waste solutions. Adsorption efficiency was influenced by various parameters, which have been investigated such as solution pH, shaking time, initial concentration, adsorbent dose and possible competing ions. The study showed that uranium adsorption was found to be quantitative at pH 5. The adsorption percentage of U(VI) was found to be 94% at the optimum conditions. Desorption conditions were also examined. About 99% of uranium loaded on modified silica was desorbed by 6% of HCl. The method was applicable for removal of uranium from natural samples.  相似文献   

7.
Abstract

This work aims to evaluate the Cr(VI) removal efficiency and adsorption capacity of the raw coconut fiber from synthetic aqueous solutions through the operational parameters as well as to represent the mechanisms of removal by kinetic and isotherm models. The experimental study was conducted in batch system and the optimum conditions for the adsorption of this metal by the biomass were according to: pH 2, contact time of 270?min, and 10?g/L of adsorbent dosage concentration. The removal efficiency obtained for Cr(VI) solutions was 99.2% at concentrations of 25–50?mg/L. For the highest concentrations, the removal decreased from 96.3% to 74.4%, when Cr(VI) solutions ranged from 100?mg/L to 250?mg/L, respectively. The adsorption kinetics was applied and showed a good agreement for pseudo-second-order and Elovich models, which point out a chemisorption. For the adsorption capacity at equilibrium conditions, the best fit was for the Redlich–Peterson isotherm indicating favorable adsorption and monolayer coverage.  相似文献   

8.
《分离科学与技术》2012,47(14):2180-2193
ABSTRACT

Novel activated carbon (AC) derived from bacterial cellulose (BC-AC) was produced by phosphoric acid activation at a carbonization temperature of 500 °C. BC-AC possesses mesoporous structures of 2.3 nm in diameter, porosity of 1.0 cm3/g and surface area of 1734 m2/g with high thermal stability between 100 and 500 °C. BC-AC could be used as an effective adsorbent for removing methylene blue (MB) from aqueous solutions with the maximum adsorption capacity of 505.8 mg/g. BC-AC presented physisorption and the adsorption of MB was most likely to be a monolayer adsorption. The Redlich–Peterson model displayed the best fit with the experimental data.  相似文献   

9.
Polyethyleneimine (PEI) modified palygorskite (Pal) was used for the adsorption of Cr(VI) in aqueous solution. The absorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA). Characterized results confirmed that the Pal has been successfully modified by PEI. The modification of PEI increased the Cr(VI) adsorption performance of the Pal by the adsorption combined reduction mechanism, and amino groups of the adsorbent play the main role in the enhanced Cr(VI) adsorption. The maximum adsorption capacity was 51.10 mg·g−1 at pH 4.0 and 25 °C. The adsorption kinetics of Cr(VI) on the adsorbent conforms to the Langmuir isotherm model. The maximum adsorption occurs at pH 3, and then the adsorption capacity of PEI-Pal was decreased with the increase of pH values. The adsorption kinetics of Cr(VI) on PEI-Pal was modeled with pseudo-second-order model. The addition of Cl, SO42− and PO43− reduced the Cr(VI) adsorption by competition with Cr(VI) for the active sites of PEI-Pal. The Cr(VI) saturated PEI-Pal can be regenerated in alkaline solution, and the adsorption capacity can still be maintained at 30.44 mg·g−1 after 4 cycles. The results demonstrate that PEI-Pal can be used as a potential adsorbent of Cr(VI) in aqueous solutions.  相似文献   

10.
ABSTRACT

In this study, the use of a spent bleaching earth for removal of Cr(VI) ions from aqueous solutions was investigated. The waste material derived from the process of vegetable oil purification was subjected to thermal and chemical activation. The so-prepared carbon-mineral adsorbents were characterised by the uptake of chromium(VI) from synthetic solutions. The highest adsorption capacities were obtained for adsorbents carbonised at 400°C (15.9 mg?g?1) and activated with H2SO4 (15.8 mg?g?1). Based on the equilibrium and kinetic studies, it was concluded that the adsorption mechanism was based on chemisorption only since no correlation with the porous texture was found.  相似文献   

11.
Poly(N‐vinyl‐2‐pyrrolidone‐g‐citric acid) [P(VP‐g‐CA)] hydrogels were prepared for the removal of U(VI), Pb(II), and Cd(II) from aqueous solutions containing different amounts of these ions (2.5–10 mg/L). Different pHs (1–13), temperatures (20–40°C), and ionic strengths (0.5M) were also tried for the adsorption behavior of these ions. The competitive adsorption values of U(VI), Pb(II), and Cd(II) ions on pure poly(N‐vinyl‐2‐pyrrolidone) were low [0.71–2.03 mg of U(VI)/g of dry gel, 0.15–1.58 mg of Pb(II)/g of dry gel, and 0.10–0.68 mg of Cd(II)/g of dry gel]. The incorporation of citric acid significantly increased the adsorption of these ions [0.67–2.12 mg of U(VI)/g of dry gel, 0.44–1.88 mg of Pb(II)/g of dry gel, and 0.04–0.92 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐1; 0.71–2.36 mg of U(VI)/g of dry gel, 0.60–2.16 mg of Pb(II)/g of dry gel, and 0.14–0.80 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐2; and 0.79–2.47 mg of U(VI)/g of dry gel, 0.70–2.30 mg of Pb(II)/g of dry gel, and 0.20–0.86 mg of Cd(II)/g of dry gel for P(VP‐g‐CA)‐3]. The observed affinity order of adsorption was U(VI) > Pb(II) > Cd(II) for competitive conditions. The optimal pH range for the removal of these ions was 5–9. Competitive adsorption studies showed that other stimuli, such as the temperature and ionic strength of the solution, also influenced the U(VI), Pb(II), and Cd(II) adsorption capacity of P(VP‐g‐CA) hydrogels. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2019–2024, 2003  相似文献   

12.
Olad  Ali  Bastanian  Maryam  Aber  Soheil  Zebhi  Hamid 《Iranian Polymer Journal》2021,30(2):105-119

A simple, cheap, and environmentally friendly bio-conducting interpenetrated polymer blend network was prepared and introduced as a highly efficient system with suitable physical and mechanical properties for industrial removal of toxic Cr(VI) ions from aqueous solution. Carboxymethyl cellulose/polyaniline (CMC/PANI) interpenetrated network (IPN) blend was prepared by simple simultaneous ion-cross-linking of CMC and PANI chains using Al3+ cations. The CMC/PANI bio-conducting nanocomposite was characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy equipped with an "energy dispersive X-ray spectroscopy" (SEM–EDX) technique. The CMC/PANI blend, ion-cross-linked by Al3+ cations, showed good stability and high surface area, proper for the removal of toxic Cr(VI) ions of the aqueous solution. Batch removal experiments were accomplished and the impression of effective variables including solution pH, initial concentration of Cr(VI) ions, contact time, and adsorbent dosage were checked and optimized. The outcome of our findings revealed that the removal of Cr(VI) ions by CMC/PANI nanocomposite IPN strongly depends on solution pH. The removal information was matched with the Langmuir adsorption isotherm model and the utmost monolayer adsorption capacity at pH 2 was 136.98 mg/g at 25 °C. The pseudo-second-order kinetics were operated and the thermodynamic parameters suggested spontaneous and exothermic nature of the adsorption process. Consequences indicated that CMC/PANI nanocomposite IPN could be an affective eco/environmentally friendly adsorbent for the removal of Cr(VI) ions from aqueous solutions.

  相似文献   

13.
《分离科学与技术》2012,47(14):2123-2141
ABSTRACT

An alizarin red S (ARS)-modified anion-exchange resin was prepared by a simple reaction of ARS with the anion exchanger Doulite A101 and used for the efficient sorption of uranium from aqueous media. The effect of various parameters on the sorption of U(VI) (pH effect, sorption kinetics, resin capacity and breakthrough curves) was investigated. The modified resin sorbs U(VI) over a wide range of pH (2·8–5) with a maximum sorption capacity of 0·68 mmol.g?1 at pH 3·2 to 4·0. Iron (III), Zr(IV), Ti(IV), Cu(II), and Th(IV) ions are also sorbed to different extents, but Be(II), Bi(III), Ca(II), Mg(II), Pb(II), Hg(II), Zn(II), Cd(II), AI(III), Mn(II), Co(II) and Ni(II) are not sorbed; thus, conditions for separating U(VI) from these metal ions have been identified. For eluting U(VI) from the resin, 0·2 mol.L?1 HCl was used and the recovery recorded was as high as 99.9%. The use of ARS is extended to float uranium quantitatively and selectively from aqueous media at pH = 4 by using oleic acid as a surfactant. The different parameters affecting the flotation process have also been investigated. Uranium(VI) has been effectively separated from natural water samples and certified uranium ores using both procedures.  相似文献   

14.
《分离科学与技术》2012,47(16):2609-2624
ABSTRACT

SBA-15 mesoporous materials modified by sulfonic acid and sulfamic acid functionalities, abbreviated as SBA-15/SO3H and SBA-15/NHSO3H, were synthesized and applied for the removal–separation of Eu(III), Th(IV), and U(VI). SBA-15/NHSO3H showed an excellent selectivity toward U(VI), while SBA-15/SO3H was more efficient adsorbent for Eu(III) and Th(IV). It was found that in the presence of KNO3 (1 mol L?1), the separation of Eu(III)/Th(IV) from their mixtures is possible. The results of the sorption behavior indicated a high adsorption capacity toward U(VI) and Th(IV) ions (140.5 and 106.7 mg g?1, respectively) and ultrafast kinetics (15 min) in Eu(III) adsorption.  相似文献   

15.
ABSTRACT

The solid residue of the cold press oil extraction from prickly pear (Opuntia ficus indica L.) fruit seeds was evaluated as a low-cost biosorbent for biosorption of Cr(VI) from aqueous solutions. Batch experiments were conducted as a function of initial pH, contact time, biosorbent dose, initial Cr(VI) concentration, and temperature. Biosorption was highly pH-dependent and found to be maximum at pH 1.0. Langmuir and Freundlich equations fitted very well with experimental data. The maximum monolayer adsorption capacity was 19.61 mg/g at 298 K and pH 1.0. Biosorption kinetics was controlled by the pseudo-second-order model. Thermodynamic parameters indicated that biosorption of Cr(VI) was a spontaneous, favorable and endothermic process. The activation energy was found to be 40.68 kJ.mol?1.  相似文献   

16.
《分离科学与技术》2012,47(15):3297-3312
Abstract

A continuous flow colloidal affinity magnetic separation device is used for the removal of As(V) and Cr(VI) from aqueous solutions. Langmuir isotherms fit the adsorption behavior of the individual ions on Orica MIEX® ion exchange particles. In a mixture of equal weight percent As(V) and Cr(VI), the adsorption of As(V) begins only above a critical cut‐off concentration, implying preferential adsorption of the higher valence ion at the available sites. Cr(VI) is removed selectively from the mixture in the continuous flow device, consistent with the presence of a higher concentration of the higher valence ion in the proximity of a charged (anion‐exchange) surface.  相似文献   

17.
《分离科学与技术》2012,47(12):1643-1653
Abstract

Adsorption of uranium(VI) and zirconium(IV) from aqueous solutions on silica gel was investigated by the batch equilibration method. The influence of shaking time and concentrations of nitric acid (i.e., pH of solution) and metal ions in solution were studied. Adsorption of uranium(VI) and zirconium(IV) increases with an increase of pH (decrease of nitric acid concentration) and ion concentrations. The adsorption mechanism of uranium(VI) and zirconium(IV) from aqueous solutions on silica gel is proposed. It is shown that zirconium(IV) and uranium(VI) can be separated if the concentration of nitric acid in solution is higher than 0.01 mol/dm3.  相似文献   

18.
A new adsorbent was prepared from wood pulp (WP) after reaction with epichlorohydrin and dimethylamine in the presence of pyridine and N,N-dimethylformamide (DMF). The adsorption of Cr (VI) from aqueous solutions by the so-prepared wood pulp adsorbent (WP-A) was investigated. Various factors affecting adsorption, such as pH, adsorbent concentration (1–5 g/L), agitation time (5–60 min), and Cr (VI) concentration (50–700), were taken into consideration. The adsorption of Cr (VI) onto (WP-A) was found to be pH-dependent and maximum adsorption was obtained at pH 3. The adsorption data obeyed Langmuir and Freundlich adsorption isotherms. The Langmuir adsorption capacity (Qmax) was found to be 588.24 mg/g. Freundlich constants, KF and n, were found to be 55.03 and 2.835, respectively.  相似文献   

19.
《分离科学与技术》2012,47(8):809-821
Abstract

The separation of mercury from aqueous HgCl2 solutions by onion skins (outermost coat) was studied both experimentally and theoretically. The distribution equilibria were measured by the batchwise method. The experimental results revealed that onion skin is a useful material for separating mercury from aqueous systems. The distribution data obtained at 25°C were analyzed by using the theory based on the law of mass action. The separation of dissolved mercury by onion skins was found to be a process accompanied by an ion-exchange reaction of the cationic complex HgCl+ and an adsorption of the neutral complex HgCl2. The equilibrium constants of the ion-exchange and adsorption processes at 25°C and the mercury-binding capacity of onion skins were determined. Further, it was found that the distribution equilibrium of mercury is comparatively insensitive to temperature.  相似文献   

20.
The aim of this research was to investigate the sorption characteristics of polyaniline coated on sawdust (PAn/SD) for the removal of Cr(VI) ions from aqueous solutions. The sorption of Cr(VI) ions was carried out by the batch method. Characterization of PAn/SD was done by FTIR and SEM. The optimum conditions of sorption were found to be a PAn/SD dose of 0.6 g in 100 mL of Cr(VI) solution (50 mg/L), a contact time of 20 min, pH 2, and a temperature of 20°C, Increased temperature had a negative effect on the removal efficiency. Three equations, that is Morris–Weber, Lagergren, and pseudo‐second‐order, were tested to track the kinetics of the removal process. The kinetic data indicated that the adsorption process was described by the Morris–Weber equation. The Langmuir, Freundlich, and Dubinin–Radushkevick models were used with sorption data to estimate sorption capacity, intensity, and energy. The data were fitted with the Freundlich model. The thermodynamic parameters ΔH, ΔS, and ΔG were evaluated. They showed that the adsorption of Cr(VI) onto PAn/SD was feasible, spontaneous, and exothermic under the studied conditions. For desorption of Cr(VI) adsorbed onto PAn/SD, aqueous NaOH was used; with it, 85% of the adsorbed Cr(VI) could be desorbed. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号