首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
使用三重串联四级杆-电感耦合等离子质谱法(ICP-MS/MS)测定高纯氧化钇的14种稀土杂质元素。在最佳工作条件下,确定了样品的分析模式为TQ-He,对比考察了氦气和氧气作为反应气时对检出限以及等效背景浓度(BEC)的影响,能有限地消除氧化钇基体中产生的多原子离子干扰。选择碰撞模式对干扰的消除,能达到准确测定高纯钇中痕量稀土杂质的目的。实验测得了在氦气模式下,稀土元素的检出限的范围是0.007~0.89 μg/L,加标回收率为97.93%~104.86%,相对标准偏差(RSD)为 0.78%~3.39%。该方法简单、精密度高,可以满足纯度为99.999%~99.999 9%及以上的高纯氧化钇中14种稀土杂质元素的直接测定。  相似文献   

2.
《分离科学与技术》2012,47(15):2374-2385
ABSTRACT

Competitive foam separation of two rare earth elements (REEs), Eu(III) and Tb(III), are investigated in this study in presence of ethylenediaminetetraacetic acid (edta) using cetylpyridinium chloride (CPC). The effects of pH, [edta]/Σ[REEs] and [CPC]/[edta] molar ratio, frother concentration, ionic strength and air-flow rate on the foam separation efficiency are also evaluated. At the optimal experimental condition, Eu(III)/Tb(III) separation factor of 141.56 is obtained. The kinetic data obtained at all the studied parameters are analyzed by the flotation first-order and second-order kinetic models. Eventually, a schematic flow-sheet for Eu(III)/Tb(III) separation is proposed.  相似文献   

3.
建立了一种电感耦合等离子体质谱法测定茴香调味品中痕量稀土元素的方法。利用该方法分析了国家标准物质(GBW 07605)中的稀土元素,结果与标准值一致。该方法被用于分析茴香调味品实际样品中的稀土元素,结果令人满意。  相似文献   

4.
建立了一种电感耦合等离子体质谱法测定高良姜中稀土元素的方法。利用该方法分析了国家一级灌木枝叶标准物质(GBW07603)中的稀土元素,结果与参考值一致。该方法被用于分析高良姜样品中的稀土元素,得到令人满意的结果。  相似文献   

5.
稀土元素螯合物分离和色谱定性测定   总被引:1,自引:0,他引:1  
将化学性质近似的稀土元素转化为稳定而定量挥发的螯合物,可用气相色谱把他们良好分离。本文用H(TPM)配位体合成了Sc、Y、Er、Eu和La的螯合物,考察了其气相色谱的分离行为,讨论了该螯合物在气相色谱条件下,保留时间随稀土元素离子半径增大而增长的规律。  相似文献   

6.
BACKGROUND: Synergistic extraction has been proven to enhance extractability and selectivity. Numerous types of synergistic extraction systems have been applied to rare earth elements, among which sec‐nonylphenoxyacetic acid (CA100) has proved to be an excellent synergistic extractant. In this study, the synergistic enhancement of the extraction of holmium(III) from nitrate medium by mixtures of CA100 (H2A2) with 2,2′‐bipyridyl (bipy, B) in n‐heptane has been investigated. The extraction of all other lanthanides (except polonium) and yttrium by the mixtures in n‐heptane has also been studied. RESULTS: Mixtures of CA100 and bipy have significant synergistic effects on all rare earth elements, for example holmium(III) is extracted as Ho(NO3)2HA2B with the mixture instead of HoH2A5, which is extracted by CA100 alone. The thermodynamic functions, ΔHo, ΔGo, and ΔSo have been calculated as 2.96 kJ mol?1, ? 6.23 kJ mol?1, and 31.34 J mol?1 K?1, respectively. CONCLUSION: Methods of slope analysis and constant molar ratio have been successfully applied to study the synergistic extraction stoichiometries of holmium(III) by mixtures of CA100 and bipy. Mixtures of these extractants have also shown various synergistic effects with other rare earth elements, making it possible to separate them. Thus CA100 + bipy may be used to separate yttrium from other lanthanides at appropriate ratios of the extractants. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Effect of temperature (5°–65°C) on the separation of 11 inorganic anions by ion interaction chromatography (IIC) was studied employing RP C18 and C PhenylHexyl columns and aqueous mobile phase: 2.8 mM NaHCO3 + 0.7 mM TBAOH (tetra-n-butylammonium hydroxide). The apparent enthalpy changes, ΔH for hydrophobic ions like I?, SCN?, and ClO4 ? largely exceeded 3 kcal/mole suggesting that added to ion exchange they are retained by hydrophobic adsorption. Unlike conventional strongly basic anion exchangers, our system can be used at elevated temperatures with alkaline eluents without irreversible damaging the column.  相似文献   

8.
BACKGROUND: Liquid–liquid extraction is widely used for the separation of rare earths, among which synergistic extraction has attracted more and more attention. Numerous types of synergistic extraction systems have been applied to rare earths with high extraction efficiency and selectivities. In the present study, mixtures of sec‐octylphenoxyacetic acid (CA12, H2A2) and 1,10‐phenanthroline (phen, B) have been used for the extraction of rare earths from nitrate medium. The stoichiometry of samarium(III) extraction has been studied using the methods of slope analysis and constant molar ratio. The possibility of using synergistic extraction effects to separate rare earths has also been studied. RESULTS: Mixtures of CA12 and phen display synergistic effects in the extraction of rare earth elements giving maximum enhancement coefficients of 5.5 (La); 13.7 (Nd); 15.9 (Sm); 24.5 (Tb); 45.4 (Yb) and 12.3 (Y). Samarium(III) is extracted as SmHA4B3 with mixtures of CA12 and phen instead of SmHA4 when extracted with CA12 alone. The calculated logarithm of the equilibrium constant is 6.0 and the thermodynamic functions, ΔH, ΔG, and ΔS, have been calculated as 4.3 kJ mol?1, ? 33.7 kJ mol?1 and 129.7 J mol?1 K?1, respectively. CONCLUSION: Mixtures of CA12 and phen exhibit synergistic effects on rare earth elements. Graphical and numerical methods have been successfully used to determine their stoichiometries. The different synergistic effects may provide the possibility of separating yttrium from heavy lanthanoids at an appropriate ratio of CA12 and phen. Copyright © 2010 Society of Chemical Industry  相似文献   

9.
The miscibility of poly(vinyl chloride)/poly(methylmethacrylate) (PVC/PMMA) system was improved by introducing some pyrrolidone units into the main chains of PMMA. For that purpose, we have synthesized two copolymers of poly(methylmethacrylate‐co‐vinylpyrrolidone) (MMVP) through a radical polymerization and carried out a comparative study of PVC/MMVP blends by inverse gas chromatography (IGC) and differential scanning calorimetry (DSC) methods. The adequacy of seven n‐alkane probes has been tested to determine the thermodynamic parameters. The miscibility of the two systems has been proved by a single Tg for each blend. This observation was also confirmed by DSC analysis. To highlight the presence of interaction and its intensity between PVC and MMVP in the blends, the polymer–polymer interaction parameters have been evaluated by IGC trough which the influence of the solute has been resolved. The Schneider approach confirmed the miscibility of these systems as the K deviates positively from unity. The miscibility has been appeared highlighted from the positive difference in surface energy between the pure polymers and their blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The morphology changes and surface thermodynamics of blends of amylopectin (AP)–poly(L ‐lactide) (PLA) were investigated over a wide range of temperatures and compositions using the inverse gas chromatography method. Twenty‐five solutes were selected such as alkanes, acetates, oxy, halogenated, and six‐member ring families. They provided a variety of specific interactions with the blends' surface. The morphology showed two regions, some others showed a de‐polymerization above 130°C. These zones enabled the estimation of Tg and Tm of AP, PLA, and the blends. Blending AP with PLA caused a decrease in AP's Tg value due to the reduction of the degree of crystallinity of the blend. Exothermic values of χ23 were obtained indicating the compatibility of AP and PLA at all temperatures and weight fractions of AP–PLA. The miscibility was favored at 75%AP, only 25%AP–75%PLA composition influenced the degree of crystallinity. The dispersive component of the surface energy of the blends ranged from 16.09 mJ/m2 for the pure AP as high as 58.36 mJ/m2 at 110°C when AP was mixed with PLA in a 50–50% ratio. The surface energy was at its highest value when the composition was 75% of AP, in good agreement with χ23 values. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号