首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
Dual phase (DP) steels with network and fibrous martensite were produced by intercritical annealing heat treatment cycles. Some of these steels were deformed at dynamic strain aging temperatures. Room temperature tensile tests of specimens deformed at 300 °C showed that both yield and ultimate tensile strengths for both morphologies increased, while total elongation decreased. Fatigue test results before and after high temperature deformation showed that dynamic strain aging has a stronger effect on fatigue properties of dual phase steels with fibrous martensite. Cracks in DP steels with fibrous martensite propagate in a tortuous path in soft ferrite phase, while they pass of both hard and soft phases in DP steels with network martensite.  相似文献   

2.
开展了固溶处理后TWIP钢Fe-23Mn-2Al-0.2C的拉伸实验,研究了应变速率对其拉伸变形行为的影响.结果表明,当应变速率在2.97×10-4-1.49×10-1s-1范围内变化时,钢的屈服强度没有明显变化,随着应变速率增大,抗拉强度稍有降低,延伸率明显减小.当应变速率较低时,其加工硬化速率随着真应变呈现三个阶段...  相似文献   

3.
Cyclic strain hardening has been observed to be markedly sensitive to microstructural changes in microalloyed steels. Two significantly different microstructures - polygonal ferrite grains of average grain size 10–120 μm and acicular ferrite/upper bainite colonies of dimensions 200–625 μm - were examined in order to determine the influence of each on cyclic strain hardening and related properties. Tests were conducted at temperatures between ?150 and 27°C. The cyclic strain hardening exponent, βc, was significantly more sensitive to changes in the size of the polygonal ferrite grains than to changes in the acicular ferrite/upper bainite colony size.  相似文献   

4.
ABSTRACT

The effects of Mn on the microstructure and impact-abrasion wear resistance of bainitic steel were studied. Results showed that the Mn-containing steel possessed finer microstructure and higher volume fraction of retained austenite, in comparison with the Mn-free steel. This was caused by lower transformation temperature and higher strength of undercooled austenite. The weight loss of Mn-free steel varying with the impact load was larger than that of Mn-containing steel. High strength, hardness and toughness of Mn-containing steel were conducive to improving wear resistance. More retained austenite in Mn-containing steel played an active role in work hardening and hindering crack propagation. However, the portion of retained austenite that induced martensitic transformation was the same with increasing impact-wear load.  相似文献   

5.
A crystal plasticity finite element model with dislocation-twin interaction was developed to study the strain rate-dependent hardening of Fe–Mn–Al–C twinning-induced plasticity steel. Microstructural state variables including twinning space and dislocation density were incorporated to describe the mechanical twins hindering gliding dislocations. In situ scanning electron microscope tension and electron backscatter diffraction tests were conducted as validation and supplement. Predicted stress and strain hardening rate at various strain rates agree well with the experimental results. The increasing strain hardening stage is attributed to the dynamic competition between deformation twinning and dynamic recovery of dislocations. The intergranular deformation heterogeneity associated with the competitive activities of deformation mechanisms was also studied. The results indicate a larger contribution of slip to overall hardening than twinning.  相似文献   

6.
The effect of martensite morphology on the impact and tensile properties of dual phase steels with a 0.25 volume fraction of martensite (Vm) under different heat treatments was investigated. These treatments are direct quenching (DQ) and step quenching (SQ) that result in different microstructures and mechanical properties. To process dual phase steels, a low carbon manganese steel was used. At first the banding present in the initial steel was eliminated, then the two different heat treatments were applied. To reach a 0.25 volume fraction of martensite a variation of intercritical annealing temperatures was adopted for both treatments that allowed the evolution of different volume fraction of martensite. Phase analysis showed that an intercritical temperature of 725 °C (between A3, A1) gives the desired 0.25 Vm of martensite. A comparison of impact, tensile and ductile–brittle transition temperature (DBTT) indicates that the microstructure of the direct treatment has a better toughness. The DBTT for the DQ and SQ treatment is ?49 and ?6 °C, respectively.  相似文献   

7.
Microstructures and tensile properties of Mg-5Al-0.3Mn-xSm (x = 0, 1, 2 and 3 wt.%) alloys prepared by metal mould casting method were investigated. It was demonstrated that Mg-5Al-0.3Mn alloy was mainly composed of α-Mg and β-Mg17Al12 phases. However, the other two precipitates (Al11Sm3 and Al2Sm) were observed along grain boundaries in the alloys containing Sm. The amount of Al11Sm3 and Al2Sm precipitates was increased with the increment of Sm content. Meanwhile, volume fraction of β-Mg17Al12 phase was decreased. Moreover, the morphology of β-Mg17Al12 was altered from bulk bone-like shape to spherical one. Tensile results showed that Mg-5Al-0.3Mn-2Sm alloy exhibited the highest tensile properties both at room temperature and 150 °C. Compared with ultimate tensile strength (UTS), yield strength (YS) and elongation (?) of Mg-5Al-0.3Mn alloy, UTS, YS and ? of Mg-5Al-0.3Mn-2Sm alloy were enhanced by 30%, 45% and 35% at room temperature, and by 17%, 48% and 96% at 150 °C, respectively. The improvement of tensile properties was attributed to the decreased amount of β-Mg17Al12 and its refined morphology, and high thermal stable Al11Sm3 and Al2Sm precipitates which effectively prohibited dislocation movement and grain boundary sliding during deformation process.  相似文献   

8.
The effects of Pd on the microstructure and mechanical properties of Mg-6Al-1Zn alloys were investigated. Mg-6Al-1Zn-xPd (x = 0-6 wt.%) alloys were prepared using a permanent mould casting method. The microstructure of the as-cast alloys was characterized by the presence of Mg17Al12 and Al4Pd phases. The volume fraction of the Al4Pd phase was increased by the addition of 1-6 wt.%Pd but the volume fraction of the Mg17Al12 phases decreased. At room temperature, the tensile strength increased with increasing Pd addition up to 2 wt.%Pd, and the elongation to fracture decreased with a concomitant increase in the aggregation of the coarse Al4Pd phase. At 150 °C, the tensile strength increased with the addition of Pd. Therefore, the room and elevated temperature tensile properties of as-cast Mg-6Al-1Zn alloys can be improved by Pd addition.  相似文献   

9.
Dissimilar steels welded joints, between ferritic steel and austenitic stainless steel, are always encountered in high‐temperature components in power plants. As two new grade ferritic steel and austenitic stainless steel, T92 (9Cr0.5Mo2WVNb) and HR3C (TP310HCbN), exhibit superior heat strength at elevated temperatures and are increasingly applied in ultra‐supercritical (USC) plants around the world, a complete assessment of the properties for T92/HR3C dissimilar steels welded joints is urgently required. In this paper, metallographic microstructures across the joint were inspected by optical microscope. Particularly, the creep rupture test was conducted on joints under different load stresses at 625 °C to analyse creep strength and predict their service lives, while their fractograph were observed under scanning electron microscope. Additionally, finite element method was employed to investigate residual stress distribution of joints. Results showed that the joints were qualified under USC conditions, and T92 base material was commonly the weakest part of them.  相似文献   

10.
Abstract

The hot ductility of Nb/V containing high Al, twin induced plasticity (TWIP) steels has been examined over the temperature range 650–1150°C after melting and after ‘solution treatment’. Previous work had shown that the hot ductility is poor for the 1·5 mass-%Al, TWIP steel due to precipitation of AlN at the austenite grain boundaries, the depth of the trough being similar to that for an X65 grade pipeline steel but with the trough covering a much wider temperature range. Adding Nb and V made the ductility even worse due to the additional precipitation of NbCN and VN. Very low reduction of area values, 10–20% were obtained in the temperature range 700–900°C. Increasing the cooling rate to the test temperature resulted in even worse ductility. The ductility of these steels after ‘solution treatment’ is similar to that obtained after melting but when the cast was hot rolled followed by ‘solution treatment’ and cooling to the test temperature ductility improved due to grain refinement.  相似文献   

11.
It has been recognized that ductility of prestrained steel is inferior to that without prestrain, and the critical equivalent plastic strain of ductile fracture initiation is inversely related to stress triaxiality. In this paper, the effects of compressive and tensile prestrain on ductile fracture initiation in steels are investigated quantitatively by adopting the relationship between stress triaxiality and critical equivalent plastic strain. It is found that compressive prestrain leads to cleavage cracking and reduces ductility. In the case of the TMCP steel, compressive prestrain up to 30% does not decrease the ductility, accompanied by no evidence of cleavage cracks. However, in the case of SM490B steel, 30% compressive prestrain leads to cleavage cracking and reduces ductility significantly.  相似文献   

12.
ABSTRACT

Processing conditions better than those of conventional quenching and partitioning process are suggested for 0.2C–10Mn–2Al steel. The steel can retain 24% of austenite on quenching to room temperature and effectively partition carbon from martensite to austenite at 200°C. The resulting tensile properties were comparable to those produced by conventional quenching and partitioning. Moreover, the suggested processing condition resolves an issue of intercritically annealed medium Mn steels by improving the yield strength and eliminating yield point phenomenon as well as serrated flow.

This paper is part of a Thematic Issue on Medium Manganese Steels.  相似文献   

13.
SiC-Al界面Al_4C_3的生成及其控制   总被引:2,自引:0,他引:2  
系统研究了在Al中添加Si对控制SiC-Al之间生成Al4C3的化学反应的作用和对SiC-Al系统化学反应动力学的影响,以及温度对化学反应程度的影响,探讨了Al4C3生成的机理。研究表明,添加Si于Al中使SiC和Al之间生成Al4C3的化学反应得到有效的控制并明显影响化学反应的速度;SiC-Al系统化学反应的程度随温度升高而增大;Al4C3的生成通过两个步骤进行,即SiC溶解于熔融金属Al中,然后和Al发生化学反应。研究结果为用熔融金属加工技术合成无Al4C3生成的SiC/Al复合材料提供了可靠的途径。  相似文献   

14.
GH984G alloy is a low cost Ni–Fe based wrought superalloy designed for 700 °C advanced ultra-supercritical (A-USC) coal-fired power plants. In this paper, the microstructure evolution and tensile properties of GH984G alloy with different Ti/Al ratios during thermal exposure at different high temperatures are investigated. Detailed microstructure analysis reveals that the Microstructure of alloys with different Ti/Al ratios are similar after standard heat treatment, and the primary precipitates are γ′, MC, M23C6 and M2B. However, η phase precipitates at grain boundary in the alloy with high Ti/Al ratio after thermal exposure at 750 °C for 570 h. By contrast, the microstructure stability of the alloy with lower Ti/Al ratio is excellent. There is no detrimental phase even if after thermal exposure at 750 °C for 5000 h in the alloy with lower Ti/Al ratio. γ′ coarsening plays a great role on the tensile strength, and the critical size range of γ′ could be defined as approximately 27–40 nm. The influence of η phase on tensile strength has close relationship with its volume fraction, the high volume fraction results in the decrease of tensile strength. The tensile strength of the alloy with lower Ti/Al ratio is obviously higher than the alloy with higher Ti/Al ratio and the yield strength has no obvious decrease during long-term thermal exposure at 700 °C. It is demonstrated that the thermal stability of microstructure and mechanical properties of GH984G alloy can be improved by moderately decreasing Ti/Al ratio to satisfy the requirement of A-USC plants.  相似文献   

15.
The objective of this paper is to investigate the effect of Multi-Walled Carbon Nanotubes (MWCNTs) content on microstructure and dry sliding wear behavior of hypo-eutectic A356Al–Si alloy Metal Matrix Nano-Composites (MMNCs). Composites containing 0.5, 1.5, and 2.5 wt.% MWCNTs were prepared by rheocasting technique followed by squeeze casting. Characterization of nanocomposites was done by scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX), dry sliding wear tests were performed in a pin-on-disk wear tester against a steel disk at various speeds and normal loads. Results revealed that a decrease in both wear rate and friction coefficient of the nanocomposites considerably with the increase of MWCNT's content. The formation of the hard compact transfer layer on the pin surface nanocomposites assisted in increasing the wear resistance of these materials. It is that the transfer layer which was formed under an applied load of 20 N can act as a protective layer and help in reducing the wear rate. The results indicate the nano composites could be used in light-weight applications where moderate strength and wear properties are needed.  相似文献   

16.
The influence of tempering temperature on the reversed austenite formation and tensile properties are investigated in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steel in the temperature range of 550-950 °C. It is found that at the temperatures below 680 °C, the reversed austenite formation occurs by diffusion. Amount of the reversed austenite is determined by the tempering temperature and the holding time. The segregation of Ni is the main reason for the stability of the reversed austenite. When the temperatures are above 680 °C, the reversed austenite formation proceeds by diffusionless. The reversed austenite will transform back to martensite after cooled to room temperature. The tensile properties are most strongly influenced by the amount of the reversed austenite obtained at room temperature. The excellent combination of good strength and ductility is at 610 °C.  相似文献   

17.
Al–8Fe–4Ce alloy is currently manufactured by consolidating the atomized powders. With the aim to reduce the cost, spray forming process was applied in manufacturing with misch metal as raw materials. Spray forming (SF) as well as casting were employed to prepare Al–8Fe–4RE alloy, followed by hot‐press to compact the samples. The mechanical properties of SFed and cast Al–8Fe–4RE alloys are characterized at a temperature of 350 °C. The results show that the Al3Fe phases contained in SF alloy is comparatively refined, forming needle‐shaped phases embedded in the Al matrix, and the SF alloy also showed lower degree of preferred orientation in (111) plane. Although both factors might explain the superior performance of the SF sample, the fracture appearance after tensile test at 350 °C shows that the contribution from crystallographic feature might be predominant. Spray forming is proved to be a very promising technique for manufacture of Al–Fe–Ce alloys of high strength at an elevated temperature.  相似文献   

18.
采用典型的溶胶-凝胶法,在高镍LiNi0.8Co0.1Mn0.1O2正极颗粒表面包覆不同含量的Li3PO4锂离子导体。利用X射线衍射仪,扫描电镜对Li3PO4包覆前后的LiNi0.8Co0.1Mn0.1O2样品的晶体结构和微观形貌进行分析。结果表明,合成材料的层状结构明显,阳离子混排度低,并且Li3PO4成功包覆在LiNi0.8Co0.1Mn0.1O2颗粒表面。另外,对4个样品进行了首次充放电,倍率放电和循环性能比较,结果表明经过Li3PO4包覆后的正极材料的综合电化学性能明显比未包覆样品优越。首次库伦效率从未包覆样品的84.2%提高到2%(质量分数)Li3PO4包覆样品的89.2%。而且在5C高倍率,2%(质量分数)Li3PO4包覆LiNi0.8Co0.1Mn0.1O2的放电比容量是129.7 mAh/g,远远高于未包覆样品的92.6 mAh/g。同时,在常温和高温环境下循环100次后,2%(质量分数)Li3PO4包覆LiNi0.8Co0.1Mn0.1O2的容量保持率比未包覆样品分别高出7.1%和9.9%。  相似文献   

19.
为了开发出一种无黏结相硬质合金来减少传统硬质合金中钴元素的应用,采用化学法制备(W,Mo)C/Al2O3/La2O3。以偏钨酸铵、钼酸铵、硝酸铝、硝酸镧、尿素和葡萄糖为原料,通过低温燃烧法探究硝酸盐和尿素、葡萄糖的不同配比,得出最优配比后还原炭化制备(W,Mo)C/Al2O3/La2O3粉末。在1500~1800℃经离子烧结制备(W,Mo)C/Al2O3/La2O3无黏结相材料,研究其力学性能并分析强韧化机制。结果表明:硝酸盐和尿素的最佳摩尔配比为1∶2,硝酸盐和葡萄糖的最佳摩尔配比为1∶0.5,加入葡萄糖后颗粒尺寸减小了0.28μm,比表面积提高了75.64%。致密度、维氏硬度和抗弯强度在1600℃时达到最大值分别为:98.45%,2202HV和1203 MPa,断裂韧度在1500℃时达到最大值为7.52 MPa·m1/2。由于晶粒的细化及第二相颗粒的增韧的影响,(W,Mo)C/Al2O3/La2O3在1500~1600℃时以沿晶断裂和穿晶断裂为主;晶粒长大以及孔隙的出现导致(W,Mo)C/Al2O3/La2O3在1700~1800℃时以沿晶断裂为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号