首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper life cycle energy (LCE) demand of a residential building of usable floor area about 85.5 m2 located at Hyderabad (Andhra Pradesh), India is evaluated under different envelopes and climates in Indian context. The house is studied with conventional (fired clay) and alternative wall materials (hollow concrete, soil cement, fly ash and aerated concrete) under varying thickness of wall, and insulation (expanded polystyrene) on wall and roof. The house is modelled for five different climatic zones of India, i.e. hot and dry, warm and humid, composite, cold and moderate. Study suggests that alternative wall materials alone (without insulation) reduce LCE demand of the building by 1.5-5%. Aerated concrete (AC), as wall material, has better energy performance over other materials. LCE savings are significant when insulation is added to external wall and roof. It varies from 10% to 30% depending on the climatic conditions. Maximum LCE savings with insulation are observed for warm and humid climate and least for moderate climate. For same thickness of insulation, LCE savings are much more with roof insulation than wall insulation. But wall insulation is found to be preferable to a thicker wall. It is also observed that there is a limit for thickness of insulation that can be applied on external walls and roof from life cycle point of view. This limit is found to be about 10 cm for composite, hot and dry, warm and humid, and cold climates and 5 cm for moderate climate.  相似文献   

2.
Computer simulation and analysis of a ground source heat pump system with horizontal ground heat exchangers operating in heating (max 5.5 kW) and cooling (max 3.3 kW) mode was carried out for a typical residential house, with 200 m2 of living space, located in Sapporo (Japan). In spite of high electricity rate, the ground source heat pump system is more beneficial alternative for space heating than an oil furnace and an electric resistance system. Besides, the heat pump technology offers relatively low thermal degradation of the ground environment, lower cost of heating and cooling, higher operating efficiency than electric resistance heating or air-source heat pump and is environmentally clean, i.e. without greenhouse gas emission, if the electricity is generated from renewable energy resources, such as wind and solar. The use of the cooling mode can provide further benefits like a shorter investment payback and human thermal comfort in summer. As a result, application of horizontal loops for new and retrofit residential and commercial use in northern Japan is feasible particularly in farmland areas.  相似文献   

3.
Ground heat losses from solar ponds are modelled numerically for various perimeter insulation strategies and several solar pond sizes. The numerical simulations are steady state calculations of heat loss from a circular or square pond to a heat sink at the outer boundaries of an earth volume that surrounds the pond on the bottom and sides. Simulation results indicate that insulation on top of the ground around the pond perimeter is rather ineffective in reducing heat loss, and that uninsulated sloping side walls are slightly more effective than insulated vertical side walls, except for very small ponds. The numerical results are used to derive coefficients for a semi-empirical equation describing ground heat loss as a function of pond area, pond perimeter and insulation strategy. Experimental results for ground heat loss and energy balance in the 400 m2 solar pond at the Ohio State University are reported. Analysis of this data, along with data on solar energy input, heat gain by the pond, heat loss through the gradient zone, and heat extraction from the pond yields a good energy balance. Numerical simulation of ground heat loss from this pond shows good agreement with the results obtained from pond measurements. Loss turns out to be large because of unexpectedly high values of earth thermal conductivity in the region.  相似文献   

4.
T. Muneer  M. Hawas 《Energy》1981,6(6):519-527
The possibility of using solar energy collected on flat plate collectors situated on roofs for residential space heating/cooling and domestic water heating is considered. The study is carried out on a typical house situated in various locations in Libya. Two types of constructions involving heavy and light insulation, three roof tilts, and three values of system efficiency are considered. The study shows that the demand in a great part of the country can be provided from solar energy by a medium efficiency system, even with light insulation and a horizontal roof. Only in a few locations should the roof be tilted at an angle of 10 °. For a low-efficiency system, insulation is necessary; for a high-efficiency-system, it was found that there is no need for either heavy insulation or tilting of the roof.  相似文献   

5.
Positive energy residential buildings are houses that generate more energy from renewable sources than they consume while maintaining appropriate thermal comfort levels. However, their design, construction and operation present several critical challenges. In particular, the considerable load reductions are not always compatible with the increased level of comfort expected in modern houses. Tropical climates, meanwhile, should be more amenable to the implementation of positive energy houses for two reasons. Firstly, negligible heating is generally required as compared to colder climates, where the heating energy requirements are considerable. Then, renewable energy resources are usually abundant in tropical climates. This paper investigates the feasibility of positive energy residential buildings in the tropical island of Mauritius. A baseline model representing a typical Mauritian house is designed using DesignBuilder software. The energy efficiency of the model is then optimised by investigating a whole range of passive building design strategies, many of them adapted from vernacular architecture. Results reveal that the application of passive strategies such as shading, insulation and natural ventilation have precluded the need for artificial cooling and ventilation in the positive energy (PE) house. The resulting electricity consumption of the house decreases from 24.14 to 14.30 kWh/m2/year. A 1.2 kW photovoltaic system provides the most cost-effective solution to exceed the annual electricity requirements of the house.  相似文献   

6.
A method of improving the performance of heat pumps for domestic space heating has been investigated. The study focuses on the short-term storage of heat pump output energy in concrete floor panels. This paper describes the dynamic computer simulation of an air to water heat pump, a floor panel energy store and energy flowpaths in a dwelling. The heating plant, controls and building thermal behaviour, were simulated as a complete energy system to enable the study of interactions between the subsystems. The model heating system comprised a number of under floor water heated panels installed in ground floor rooms of a two storey dwelling. Supplementary energy was supplied by direct electric heaters situated in most rooms. Heat pump operating periods were controlled as a function of the external air temperature within two prescribed occupancy intervals per day. Results of the investigation indicate that a heat pump system using floor panel storage and emission may be efficiently managed to provide nearly continuous heating with little supplementary energy input. The short-term storage of energy in thick floor panels allowed the heat pump to be operated for extended periods without cycling. Because of this, the seasonal loss in heat pump performance resulting from intermittent operation was less than 1 per cent. Attempting to supply the total space heating load with the heat pump and floor panel system resulted in severe overheating during periods of high solar or casual gain. Under these conditions the simple control strategy based on the measurement of external air temperature was ineffective. This problem was eliminated by reducing the heat pump energy input to the dwelling and supplying about 10 per cent of the seasonal energy demand by direct electric heaters. The influence of floor panel energy storage capacity on the performance of the heating system was investigated. Concrete panel depths of between 25 and 150 mm were considered. The seasonal system efficiency was found to increase with floor panel thickness, although not significantly with panel depths beyond 100 mm. The extensive use of floor slabs to store energy caused mean floor temperatures to be higher than when using direct electric air heaters only. However, with the depth of under floor insulation considered in the study (75 mm), heating the floor slab increased the seasonal energy loss of the building by only 4 per cent.  相似文献   

7.
The energy needs of a typical one-family house in the Thessaloniki area for heating, cooling and domestic hot water production are calculated. The calculations are based on the typical average daily consumption of hot water and on the degree-day method for heating and cooling. The results are finally translated into thermal energy consumption, assuming the typical Greek situation (heating with diesel oil boilers and conventional radiators, cooling with local air-to-air split-type heat pumps and hot water production with electric heaters). The same energy needs are assumed to be covered by a vertical closed loop ground heat exchanger combined with a water-to-water heat pump system with fan-coils for heating and cooling and a thermosyphonic solar system for domestic hot water production. The ground heat exchanger/heat pump system efficiency is determined using data from an existing and continuously monitored similar system installed in the broader area of Thessaloniki. The solar system load coverage is calculated using the f-chart method. The energy consumption of the renewable energy systems is calculated and compared to that of the conventional system. The results prove that significant energy savings can be achieved.  相似文献   

8.
地源热泵是一种利用土壤所储藏的太阳能资源作为冷热源进行能量转换的供暖制冷空调系统,通过输入少量的高品位能源(如电力、机械功、燃气和液体燃料),实现热量从低温热源向高温热源的转移.以上海某小型别墅为对象,设计了一套家用地源热泵空调系统.首先计算了夏季冷负荷和冬季热负荷,然后根据冷、热负荷选择一套水源热泵机组(MWH080CR型机组)和相应的风机盘管,进行了室内水管环路系统、土壤热交换器和地板采暖的设计选型,最后对系统的能效比进行了计算.结果表明,该空调系统具有节能环保、稳定可靠、舒适耐用等优点.  相似文献   

9.
In Tunisian climate, both heating in winter and cooling in summer are required to reach comfort levels. Due to the significant increase in building energy consumption, insulation of external walls is recently applied with a thickness typically ranging between 4 cm and 5 cm regardless of structure and orientation of walls and of economic parameters. In the present study, optimum insulation thickness, energy saving and payback period are calculated for a typical wall structure based on both cooling and heating loads. Yearly transmission loads are rigorously estimated using an analytical method based on Complex Finite Fourier Transform (CFFT). Considering different wall orientations, the west and east facing walls are the least favourite in the cooling season, whereas the north-facing wall is the least favourite in the heating season. A life-cycle cost analysis over a building lifetime of 30 years shows that the south orientation is the most economical with an optimum insulation thickness of 10.1 cm, 71.33% of energy savings and a payback period of 3.29 years. It is noted that wall orientation has a small effect on optimum insulation thickness, but a more significant effect on energy savings which reach a maximum value of 23.78 TND/m2 in the case of east facing wall. A sensitivity analysis shows that economic parameters, such as insulation cost, energy cost, inflation and discount rates and building lifetime, have a noticeable effect on optimum insulation and energy savings. Comparison of the present study with the degree-days model is also performed.  相似文献   

10.
Abstract

A hybrid ground-coupled heat pump (GCHP) is an efficient and sustainable technology for space heating and cooling. A demonstration house equipped with GCHP with a solar seasonal heat storage (SSHS) system had been built in Harbin, a severe cold zone of China. A dynamic simulation model was built for the house and GCHP with the SSHS system using TRNSYS. The model used a newly developed vertical ground heat exchanger (VGHE) module which considered coupled heat and moisture transfer (CHMT) in ground with variable soil properties (VSPs) and phase change of soil moisture (PCSM). In the simulation, a large amount of computing is consumed for VSP and PCSM, while the computing amount for moisture transfer is small. The model with the new VGHE module produced better simulated results, compared with the field data. So, CHMT-VSP-PCSM affects the performance of VGHE and system to some extent, especially CHMT. Hourly variation laws of temperatures and energy parameters were analyzed, and different characteristics were showed up at different operating stages in heating and cooling seasons for both long and short terms. The GCHP with the SSHS system can meet the heating and cooling demands of the house in general. In cooling season, adjusting the ratio of the two groups of VGHE for heat storage and cooling will increase the utilization efficiency of VGHE and make the soil temperature more balanced.  相似文献   

11.
The objective of this research was to determine the actual heat loss into the subsoil from a massive slab‐on‐ground structure in a low temperature floor heating system. The main objective was achieved by field test measurements of an actual new building in Southern Finland. The test building is a detached house including a massive concrete slab, an underneath polystyrene insulation and a crushed stone fill layer on top of the clay subsoil. The heat loss into subsoil is determined from the measured temperature difference over the slab cross‐section during a 1‐year measuring period. The long‐term behaviour of the structure was also studied by numerical simulations using 2D FE‐modelling. According to the field test results and the simulations, the increase of the slab temperature in winter increases significantly the flow rates into the subsoil, also at the central part of the slab. Theoretical calculations for a standard building show that the heat loss into the subsoil from slab‐on‐ground structures is a significant part of the total heat loss from a building and the intensity of the heat loss is strongly dependent on the average temperature of the slab structure. The effect of the various floor heating systems on the total energy consumption of a building should be taken into consideration when designing the thermal insulation of ground slabs. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Since heating and cooling systems of buildings consume 30–50% of the global energy consumption, increased efficiency of such systems means a considerable reduction in energy consumption. Ground source heat pumps (GSHP) are likely to play a central role in achieving this goal due to their high energy efficient performance. The efficiency of GSHP depends on the ground temperature, heating and cooling demands, and the distribution of heating and cooling over the year. However, all of these are affected by the ongoing climatic change. Consequently, global warming has direct effects on the GSHP performance. Within the framework of current study, heating and cooling demands of a reference building were calculated for different global warming scenarios in different climates i.e. cold, mild and hot climate. The prime energy required to drive the GSHP system is compared for each scenario and two configurations of ground heat exchangers. Current study shows that the ongoing climatic change has significant impact on GSHP systems.  相似文献   

13.
Use of solar energy through passive heating is numerically evaluated for different passive designs of weekend houses with one wall made completely of masonry and with other walls made of two layers: a masonry layer and a thermal-insulation layer. To access this problem, the heating and cooling load is determined by using a dynamic, thermal, building model newly constructed on the basis of finite volumes and time marching. The investigation is performed for two days: one winter day for the weekend house with the masonry wall facing south, and for one summer day for the weekend house with the masonry wall facing north. The heating and cooling loads are evaluated for different thicknesses of masonry by using two investigation procedures where in the first procedure the insulation thickness is kept constant, and in the second procedure the U value of the two-layer walls of the house is kept constant. When the thermal-insulation layer faces the outside of the house, this investigation reveals that the use of the passive house instead of the non-passive house for the winter day gives an energy saving of around 1.5%, and for the summer day gives the maximum energy saving of around 4% for a masonry thickness of 30 cm. When the thermal-insulation layer faces the inside of the house, the investigation reveals that passive heating is not possible at all.  相似文献   

14.
In a joint project, the authors have investigated several possible options to reduce the heating energy demand in residential dwellings in northern climates. The single measures investigated include improved thermal insulation of walls, doors, and windows, heat recovery systems and transparent insulation (TI). The investigations were carried out using the simulation programme TRNSYS by Klein et ea. (1990) with the TI extension for the building model treated in Sick and Kummer (1992). Climate data basis are hourly irradiation and temperature values from Jyväskylä, Finland (latitude: 62.16° North). The results show that (a) even during the winter months with very few hours of sunlight per day, the irradiation gains through the TI walls can compensate the heat transmission losses to a large extent. The average night U-value of the TI wall may be twice as high as an opaque wall U-value to lead to the same heating demand in November, December, and January; (b) the efficiency of a south-facing TI facade may exceed 60% in the winter months and still reach more than 15% in July and August; and (c) seasonal shading is sufficient to prevent overheating in the summer months. An analysis of the TI behaviour is given in the paper. The economics of the TI solution are compared to conventional measures for reducing the heating energy demand. Due to the simple seasonal shading control, it will be competitive when the building is optimized for TI use and the TI material production volumes increase to a realistic extent.  相似文献   

15.
A computer model is developed to simulate the performance of air-to-water heat pumps heating a house via a radiator system. The performance characteristics of the heat pumps are derived from laboratory measurements. Hourly weather observations are used to calculate the heat demand of the house and the performance of the heat pump. The effects of changes in heat pump characteristics, changes of radiator size, and changes in heat demand of the house due to insulation, are compared in terms of their effects on annual energy consumption.  相似文献   

16.
Solar ponds are shallow bodies of water in which an artificially maintained salt concentration gradient prevents convection. They combine heat collection with long-term storage and can provide sufficient heat for the entire year. We consider the absorption of radiation as it passes through the water, and we derive equations for the resulting temperature range of the pond during year round operation, taking into account the heat that can be stored in the ground underneath the pond. Assuming a heating demand of 25000 Btu/degree day (Fahrenheit), characteristic of a 2000 ft2 house with fair insulation, and using records of the U.S. Weather Bureau, we carry out detailed calculations for several different locations and climates. We find that solar ponds can supply adequate heating, even in regions near the arctic circle. In midlatitudes the pond should be, roughly speaking, comparable in surface area and volume to the space it is to heat. Under some circumstances, the most economical system will employ a heat pump in conjunction with the solar pond. Cost estimates based on present technology and construction methods indicate that solar ponds may be competitive with conventional heating.  相似文献   

17.
低温地板采暖与散热器采暖效果的对比分析   总被引:14,自引:0,他引:14  
通过地板,墙面和人体之间的辐射换热计算,分析了地板采暖比暖气片采暖节能的原因,对比了两种采暖方式温度场水平分布和垂直分布的差异,空间气流分布的差异以及两种采暖方式热源热储量的差别。通过实测数据的对比表明地板采暖在多方面优于暖气片采暖方式。  相似文献   

18.
Dynamic insulation, a form of ‘Breathing Wall’ construction which allows the movement of air and moisture through the external walls of a building, was seen as one possible method for reducing building envelope heat losses and achieving high indoor air quality. A research investigation was conducted to provide a firm scientific understanding of dynamic insulation. An important outcome of the work will be the development of building envelope designs which effectively and economically employ dynamic insulation in cold climates. This paper presents some general conclusions, confirming that the energy saving produced by dynamic insulation alone is small relative to that obtained in conjunction with conventional air heat recovery methods.  相似文献   

19.
申志妍  刘艳峰 《节能技术》2009,27(3):272-274
局部采暖建筑热负荷与非采暖房间室内平均温度和外围护结构热工参数密切相关。通过对西安、大连、长春三地的典型建筑在不同外围护结构保温方式下全面采暖和局部采暖进行能耗模拟分析后发现:处于不同气候分区的局部采暖建筑,非采暖房间室内平均温度有差别;建筑中功能相同的各非采暖房间,处在中间层的室内平均温度最高,底层次之,顶层最低,热负荷反之;且各非采暖房间室内平均温度难以满足热舒适的要求。局部采暖建筑中,部分房间热负荷高于相同外围护结构保温条件下全面采暖建筑对应房间的热负荷,但建筑热负荷低于全面采暖建筑的建筑热负荷。  相似文献   

20.
Marco Spiga  Pamela Vocale 《传热工程》2013,34(18):1520-1527
This paper analyzes the heat loss from an insulated slab on the ground, focusing on the influence of floor geometry on thermal processes in the ground. The calculation model includes the vertical and horizontal structures of the building; the foundation is also included. A building with a rectangular floor is considered; the ratio between the sides of floor (defined as aspect ratio) changes from 0 to 1. The thermal analysis is carried out resorting to a finite element code, validated in accordance with the requirements of International Standard ISO 10211. Numerical results show that floor geometry has a significant influence on steady-state ground global heat transfer coefficient; ranging from a narrow rectangular floor to a square one the steady-state ground global heat transfer coefficient decreases by about 15%. The effects of the perimeter insulation are also investigated; depending on the insulating layer thickness, the decrease of the heat transfer coefficient ranges from 8% to 13%. A comparison with the results obtained by applying the International Standard method ISO 13370 is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号