首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(16):2453-2464
The objectives of this study were to investigate the effects of ozone and the O3/H2O2 process on FeCl3 coagulation efficiency for the removal of the high content of natural organic matter (NOM) and arsenic (As) from groundwater (DOC = 9.27 ± 0.92 mg/L; 51.7 ± 16.4 µg As/L). Arsenic and NOM removal mechanisms during coagulation/flocculation are well investigated. However, data concerning arsenic removal in the presence of NOM, which is the subject of this article, are still insufficient. Laboratory and pilot plant test results have shown that the competition of NOM and As for adsorption sites on the coagulant surface have great influence on coagulation/flocculation efficiency for their removal. With both oxidation pre-treatments, arsenic content after the coagulation process was less than 2.0 µg/L in treated water. Application of ozone has a lower influence on coagulation efficacy in terms of DOC reduction, compared to the O3/H2O2 process with the same ozone dose.  相似文献   

2.
This study evaluated the feasibility of treating color filter effluent by H2O2/UV pre-oxidation and membrane postseparation for in-house reuse. The effluent qualities were TOC of 5.8–34 mg/L, color of 46–138 ADMI, and conductivity of 1020–3500 μS/cm. Although the RO separation could directly remove TOC, color, and conductivity effectively, the serious fouling problem still existed. Through H2O2/UV pre-oxidation (UV = 13 W, H2O2 = 200 mg/L), organic and biofouling were inhibited to increase the normalized flux decline from 5% to 77%. That is, H2O2/UV pre-oxidation could mitigate the permeate flux decline as well as to improve the water quality for water reuse.  相似文献   

3.
The characteristics and influencing factors for dinitrotoluene degradation by nano-Fe3O4-H2O2 were studied, and the nano-scale Fe3O4 catalyst was prepared by the coprecipitation method, with dinitrotoluene wastewater as the degradation object. The results showed that the catalytic reaction system within the pH value range of 1 to 9 could effectively degrade dinitrotoluene, and the optimal pH value was 3; with the increase of catalyst dosage, the degradation efficiency and the catalytic reaction rate of dinitrotoluene grew as well. The optimal catalyst dosage was 1.0 g/L when the H2O2 dosage was within the range of 0 to 0.8 mL/L; the degradation efficiency and reaction rate grew with the increase of H2O2 dosage. With further increase of H2O2 dosage, degradation efficiency and reaction rate decreased; under the best conditions with the H2O2 dosage of 0.8 mL/L, the catalyst concentration of 1 g/L and the pH value of 3 at room temperature (25 °C), the degradation rate of the 100-mg/L dinitrotoluene in 120 min reached 97.6%. Through the use of the probe compounds n-butyl alcohol and benzoquinone, it was proved that the oxidation activity species in the nano-Fe3O4-H2O2 catalytic system were mainly hydroxyl radical (?OH) and superoxide radicals (HO2 ?), based on which, the reaction mechanism was hypothesized.  相似文献   

4.
Ultrasonic degradation of Basic Red 29 (BR29) textile dye in the presence of Co2+-H2O2 system was investigated in this study. The effects of presence of ultrasonic power, concentrations of cobalt (II) acetate (Co(II)Act) and H2O2, temperature and initial pH on the BR29 degradation were examined. Initial dye concentration of 20 mg/L BR29 was used in the study as a model solution. In sonication experiments, an ultrasonic bath at a frequency of 40 kHz was employed. Best experimental conditions were also obtained in the studies as follows: 1000 mg/L Co(II)Act, 1000 mg/L H2O2, 40 °C and original pH of 6.70.According to the results, after 30 min of sonication in the presence of Co2+-H2O2 dye removal efficiency of practically 100% was achieved. It was also found that US enhanced the degradation rate of BR29.  相似文献   

5.
6.
ABSTRACT

The electrocoagulation (EC) of dye-polluted aqueous solutions was considered using iron electrodes. In a novel approach, the EC process was simultaneously integrated with ultrasound (US) and H2O2 on the basis of the electro-generation of magnetite nanoparticles via sacrifice anode. Direct red 31 (DR31) dye was chosen as model pollutant. During the short reaction time of 20 min, the US/H2O2/EC process led to the highest decolorization efficiency of 93.3% compared with the US/EC (65.3%) and H2O2/EC (54.1%) processes. The real textile wastewater sample was effectively treated and mineralized by the US/H2O2/EC process (COD removal: 86.7%; TOC removal: 58.7%).  相似文献   

7.
Combined processes of biological anaerobic baffled reactor (ABR) and UV/H2O2 at a laboratory scale were studied to treat a synthetic slaughterhouse wastewater. In this study, the total organic carbon (TOC) loadings of 0.2-1.1 g/(L day) were used. The results revealed that combined processes had a higher efficiency to treat the synthetic slaughterhouse wastewater. Up to 95% TOC removal was obtained for an influent concentration of 973.3 mgTOC/L at the hydraulic retention time (HRT) of 3.8 days in the ABR and 3.6 h in the UV photoreactor. Meanwhile, up to 97.7% and 96.6% removal of chemical oxygen demand (COD) and 5-day carbonaceous biochemical oxygen demand (CBOD5) were observed in the ABR for the same influent concentration, respectively. Comparatively, for an influent concentration of 157.6 mgTOC/L, the UV/H2O2 process alone with the TOC loading of 0.06-1.9 g/(L h) was also studied, in which, up to 64.3%, 83.7%, and 84.3% of TOC, COD, and CBOD5 removal were observed, respectively, at the HRT of 2.5 h with hydrogen peroxide (H2O2) concentration of 529 mg/L. It was found that individual ABR and UV/H2O2 processes enhanced the biodegradability of the treated effluent by an increased CBOD5/COD ratio of 0.4 to 0.6. An optimum H2O2 dosage of 3.5 (mgH2O2)/(mgTOCin h) was also found for the UV/H2O2 process.  相似文献   

8.
The major factors affecting the removal efficiency of sulfamethazine (SMT) by photocatalysis process in the presence of TiO2 P25 or ZnO, namely the pH, the amount of catalyst and the initial SMT concentration were examined. The obtained results showed the absence of adsorption of SMT on the catalysts and the absence of degradation of SMT by direct photolysis under UV light in the absence of catalyst. The variation of the pH solution in the range 4–9 did not cause any significant degradation of SMT. The optimal amounts of each catalyst were, respectively, 0.5 and 0.25 g/L for TiO2 P25 and ZnO. Increasing the initial SMT concentration impacted negatively the removal efficiency, which decreased from 31% to 13% and from 100% to 27% in the presence of TiO2 P25 and ZnO in the presence of 10 mg/L and 50 of SMT after 30-min reaction time, respectively. The obtained results showed better efficiency of ZnO than TiO2 P25 regarding both removal efficiency and chemical oxygen demand (COD) abatement. However, removal efficiency and COD abatement were not complete, even after 7 h of photocatalysis, about 92% and 41%, respectively. The biodegradability was examined after photocatalysis performed in the following conditions: [SMT]0 = 50 mg/L, pH = 6, T = 25°C, ω = 360 rpm and 0.5 g/L of TiO2 P25 or 0.25 g/L of ZnO. In these conditions, the removal efficiencies were, respectively, 26% and 41% in the presence of TiO2 P25 and 55 and 92% in the presence of ZnO after 4 and 7 h of pretreatment times, respectively. The BOD5/COD ratio increased substantially and, respectively, from 0 to 0.25 and from 0 to 0.16 in the presence of TiO2 P25 and ZnO after 7 h of irradiation. Even if the limit of biodegradability (0.4) was not achieved, a subsequent biological treatment was considered in the presence of TiO2 P25, leading to 58% COD abatement after a 28-day culture.  相似文献   

9.
The batch simultaneous saccharification and fermentation (SSF) of microwave/acid/alkali/H2O2 pretreated rice straw to ethanol was optimized using cellulase from Trichoderma reesei and Saccharomyces cerevisiae YC-097 cells prior to the fed-batch SSF studies. The batch SSF optima were 10% w/v substrate, 40°C, 15 mg cellulase/g substrate, initial pH 5.3, and 72 hours. Under the optimum conditions the ethanol concentration and its yield were 29.1 g/L and 61.3% respectively. Based on the optimal batch SSF, the fed-batch SSF was investigated and its operation parameters were optimized. Under its optimal conditions the ethanol concentration reached 57.3 g/L, while its productivity and yield were only slightly less than those in the batch SSF. This suggests that fed-batch SSF is a potential operation mode for effective ethanol production from microwave/acid/alkali/H2O2 pretreated rice straw.  相似文献   

10.
Fe2-xYxW3O12 powder has been synthesized by the citrate sol-gel process. A model was proposed to calculate the concentration of species in a citric solution. The calculated results could provide valuable information for determining the optimal molar ratio of cation to citric acid and pH value of solution for Fe2-xYxW3O12 preparation. The predicted parameters derived from this model are in good agreement with the experimental results. The prepared gel and the Fe2-xYxW3O12 powder were characterized by X-ray diffraction (XRD) and differential thermal analysis-thermogravimetry (DTA-TG). The results show that it is very difficult to obtain pure Fe2W3O12 powder by the citrate sol-gel process in the temperature range 500°–1000°C, however, Y2W3O12 can easily be prepared even at 500°C. Y2W3O12 annealed at 1000°C for 10 h is favorable for absorbing moisture in air to form Y2W3O12·3.3H2O. The thermal expansion coefficients of Y2W3O12·3.3H2O are: αa = ? 8.01 × 10?6°C?1, αb = ? 2.51 × 10?7°C?1, and αc = ? 5.55 × 10?6°C?1 in 473–1173 K.  相似文献   

11.
La3+/WO3/TiO2/sep composites have been prepared by the sol–gel method. The degradation of dye was studied under the influence of various operational parameters such as initial pH, amounts of catalyst, concentrations of the dye, and ozone flow rate. The mineralization of Reactive Orange 122 has been confirmed by chemical oxygen demand measurements. The color removal of dye was found to follow a pseudo–first-order kinetics. Maximum color and chemical oxygen demand removal were 99.9% and 90% respectively, at a dye concentration of 200 mg/L, ozone flow rate of 2.0 L/min., 0.05 g/L weight of catalyst, and pH of 6.9 in 4 h. In addition, the catalyst was characterized by X-ray diffraction spectra, Fourier-Transform Infrared Spectroscopy, scanning electron microscopy, and a transmission electron microscope. This work could be a good candidate as a practical application for photocatalytic dye degradation.  相似文献   

12.
Ozone was tested for the detoxification of a mixture of five parabens. A combined O3/H2O2 process was optimized leading to up to 50% of COD removal in 15 min, while less than 50 min were needed to achieve total degradation. The toxic effect of the raw mixture and after 15 min of treatment by O3/H2O2 was evaluated using V. fischeri and C. fluminea and it was observed a strong detoxification after 15 min of oxidation. Moreover, while the raw effluent promoted the formation of reactive oxygen species in Wistar rat brain slices, no changes were observed after the O3/H2O2 treatment.  相似文献   

13.
UV/H2O2氧化联合CaO吸收脱除NO的传质-反应动力学   总被引:3,自引:0,他引:3  
刘杨先  潘剑锋  刘勇 《化工学报》2013,64(3):1062-1068
在实验室规模的光化学反应器中,基于实验研究﹑动力学理论以及双膜理论,研究了UV/H2O2氧化联合CaO吸收(UV/H2O2-CaO工艺)脱除燃煤烟气中NO的传质-反应动力学。分析了NO吸收的传质-反应过程,明确了NO吸收过程的主要控制步骤和强化措施,测定了关键的动力学参数,推导了NO吸收过程的理论模型。结果表明:在实验范围内,NO吸收速率随着NO浓度的增加几乎呈线性增加。随着H2O2浓度和CaO浓度的增加,NO的吸收速率均呈现先增加后变缓的趋势。UV/H2O2-CaO工艺脱除NO是一个拟一级快速反应过程,强化气相主体扰动﹑增加气液接触面积和提高NO分压可有效提高NO的吸收速率。NO吸收速率方程的计算值和实验值具有较好的一致性。  相似文献   

14.
The photocatalytic degradation of the organophosphorus insecticide diazinon in aqueous suspensions was studied by using Ni-doped ZnO nanorods as a photocatalyst. The effects of some operational parameters such as solution pH, nanocatalyst dosage, initial diazinon concentration, different purging gases, H2O2 concentration, and type of organic compounds on the removal efficiency were studied. Under optimal conditions: pH = 7, [Diazinon]0 = 20 mg/L, nanocatalyst dosage = 0.2 g/L, H2O2 = 15 mM, 99.96% of the insecticide was removed after 120 min. Three kinetic models were developed for this process, and the findings showed that the diazinon removal rate obeyed the first-order kinetic.  相似文献   

15.
Ni-based oxygen carriers (OC) with different NiO content were prepared by incipient wet impregnation, at ambient (AI), and hot conditions (HI) and by deposition-precipitation (DP) methods using γ-Al2O3 and α-Al2O3 as supports. The OC were characterized by BET, Hg porosimetry, mechanical strength, TPR, XRD and SEM/EDX techniques. Reactivity of the OC was measured in a thermogravimetric analyzer and methane combustion selectivity towards CO2 and H2O, attrition rate, and agglomeration behavior were analyzed in a batch fluidized bed reactor during multicycle reduction-oxidation tests.XRD and TPR analysis showed the presence of both free NiO and NiAl2O4 phases in most of the OC. The interaction of the NiO with the alumina during OC preparation formed NiAl2O4 that affected negatively to the OC reactivity and methane combustion selectivity towards CO2 and H2O during the reduction reaction. The NiO-alumina interaction was more affected by the support type than by the preparation method used. The NiO-alumina interaction was stronger in the OC prepared on γ-Al2O3.The OC were evaluated in the fluidized bed reactor with respect to the agglomeration process. OC prepared by the AI and HI methods with NiO contents up to 25 wt%, OC prepared by the DP method on γ-Al2O3 with NiO content lower than 30 wt%, and OC prepared by the DP method on α-Al2O3 with a NiO content lower than 26 wt% did not agglomerated. OC that agglomerated showed an external layer of NiO over the particles. It seems that the most important factor affecting to the formation of the external NiO layer on the OC, and so to the agglomeration process, was the metal content of the OC. The attrition rates of the OC prepared using γ-Al2O3 as support were higher than the ones prepared using α-Al2O3 as support, and in general the attrition rates of all the OC were low.The OC prepared by AI, HI or DP methods on α-Al2O3 as support had appropriated characteristics to be used in the chemical-looping combustion process.  相似文献   

16.
《分离科学与技术》2012,47(9):2132-2145
Abstract

MgAl2O4 nanopowder has been prepared by alkoxides hydrolysis with further calcination at temperature of 700°C. The adsorption of a leather dye, Direct Black 38, onto this material was investigated. The sample was characterized by X-ray-diffraction (XRD), N2 adsorption–desorption isotherm and Fourier transform infrared spectroscopy. The results showed that sample present a pure phase, and the average nanocrystal size of 8 nm, the BET surface area is about 206.5 m2 · g?1 and total pore volume is about 1.44 cm3 · g?1. Adsorption kinetics data were modeled by film and pore diffusion model. The experimental isotherm was described by the Langmuir model. MgAl2O4 nanopowder presented a great removal efficiency of leather dye by adsorption process, with a maximum adsorption capacity of 833 mg of dye per gram of adsorbent.  相似文献   

17.
The oxidation of 1,3,5‐trichlorobenzene (TCB) by ozone, ozone/UV, ozone/H2O2 and ozone/UV/H2O2 was studied. All studies were conducted in a continuously‐flowing completely mixed reactor (CFCMR), operated at steady‐state conditions using a hydraulic retention time of 10 minutes. The greatest removal of TCB using ozone/H2O2 treatment was achieved using a H2O2 concentration of 60 μM. At low pH values (approx. 2) ozone/UV performed significantly better than either ozone alone or ozone/H2O2. However, at circumneutral pH, the removal efficiencies of TCB by ozone/UV and ozone/H2O2 and ozone/UV/H2O2 were essentially equal (~ 97% for TCB). The removal efficiency of ozone alone was ~93% for TCB. At high pH (> 9) there was no advantage in supplementing ozone with either UV or H2O2 as the removal efficiencies for all processes studied were essentially equal.

The effect of humic acid and bicarbonate on the removal of TCB was studied. At 1.6 mg/L humic acid, 92–95% of the TCB was oxidized by the processes studied. The removal of TCB by ozone alone was significantly affected by the presence of bicarbonate ion. For the other processes at 10 mM bicarbonate, approximately 80% of the TCB was oxidized.  相似文献   


18.
Supporting V2O5 onto an activated coke (AC) has been reported to significantly increase the AC's activity in simultaneous SO2 and NO removal from flue gas. To understand the role of V2O5 on SO2 removal, V2O5/AC is studied through SO2 removal reaction, surface analysis, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) techniques. It is found that the main role of V2O5 in SO2 removal over V2O5/AC is to catalyze SO2 oxidation through a VOSO4-like intermediate species, which reacts with O2 to form SO3 and V2O5. The SO3 formed transfers from the V sites to AC sites and then reacts with H2O to form H2SO4. At low V2O5 loadings, a V atom is able to catalyze as many as 8 SO2 molecules to SO3. At high V2O5 loadings, however, the number of SO2 molecules catalyzed by a V atom is much less, due possibly to excessive amounts of V2O5 sites in comparison to the pores available for SO3 and H2SO4 storage.  相似文献   

19.
Methane was pulsed over pure CuO and NiO as well as Cu/La2O3 and Ni/La2O3 catalysts at 600° C. Results indicate that the mechanisms for methane activation over copper and nickel are quite different. Over CuO, methane is converted to CO2 and H2O, most likely via the combustion mechanism; whereas metallic copper does not activate methane. Over NiO in the presence of metallic nickel sites, methane activation follows the pyrolysis mechanism to give CO, CO2, H2 and H2O. Similar results were obtained over the Cu/La2O3 and Ni/La2O3 catalysts. XRD investigations indicate that copper and nickel existed as CuLa2O4 and LaNiO3 respectively in the La2O3-supported catalysts. The effect of La2O3 on the activation of methane is discussed.  相似文献   

20.
The performance of carbon fiber-reinforced composites largely depends on the properties of the fiber-matrix interface. Here, to improve the interfacial strength properties of carbon fiber/epoxy composites, we doped different concentrations of Fe2O3/graphene nanosheets onto the interfacial region of the carbon fiber composites by nano-coating technology. With the aid of the magnetic field, the arrangement of nanosheets could be controlled in the interface. The nanosheets can be arranged on the carbon fiber surface parallel or perpendicularly with different concentrations. The tensile strength and interfacial shear strength of the modified fiber microcomposites had increased by 22.1 and 44.4% respectively with 1.0 mg/mL Fe2O3/graphene nanosheets. The results indicated that the Fe2O3/graphene nanosheets have an important influence on the carbon fibers and carbon fibers composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号