首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of impeller diameter on crystal growth kinetics of borax decahydrate in a batch‐cooling crystallizer of non‐standard aspect ratio was evaluated. The dual‐impeller configuration consisted of a pitched‐blade turbine which was mounted below a straight‐blade turbine on a single shaft. Three different impeller‐to‐tank diameter ratios were investigated. In all experiments, mixing was conducted at just‐suspended impeller speed. To examine hydrodynamic conditions, mixing times were measured. The fluid flow pattern and velocity distribution were determined by computational fluid dynamics. Results showed that the smallest but also more regularly shaped crystals were produced in a system with standard diameter impellers. Product yield and power consumption were highest in this case.  相似文献   

2.
The effects of impeller type and diameter in a batch cooling crystallizer on the nucleation and crystal growth kinetics as well as on the shape and size distribution of borax decahydrate crystals were investigated. Two different types of impellers of various sizes were applied. Chosen impeller configurations generate completely different fluid flow patterns in the crystallizer what allows to investigate the influence of the axial and radial flow on the kinetic parameters as well. The nucleation in crystallizer was taking place by the heterogeneous nucleation mechanism at all mixing conditions. The number of crystals formed by this mechanism increases as ratio D/dT decreases and it is higher when an axial flow pattern in crystallizer has been developed. The crystal growth rate increases with increasing the impeller size in observed supersaturation range. The radial impeller defined by ratio D2/dT = 0.58 could be considered as viable option for growth of borax crystal, since the further enlargement of this ratio does not increase growth rate and can only cause higher power consumption. The maxima in the coarser and finer fractions of CSD indicate a different influence of mixing conditions on the crystal grow and secondary nucleation. An axial flow pattern in crystallizer favors agglomeration of growing crystals increasing that way product mean crystal size, while radial flow results with more regular shape of borax crystals.  相似文献   

3.
The effects of impeller type and position in a batch cooling crystallizer on the crystal growth kinetic as well as the shape, agglomeration and crystal size distribution of disodium tetraborate decahydrate (borax) were investigated in detail. Three types of impellers applied in this work generated completely different fluid flow patterns in the crystallizer allowing investigation of the influence of the liquid flow on the kinetic parameters as well. The ratio of impeller off-bottom clearance, C, to the liquid height, H, was varied from 0.1 to 0.5 for all impeller types used. Results indicate that the impeller type and off-bottom clearance influence the overall crystal growth rate and the crystal size distribution of the final product. It was also found that agglomeration of crystals produced was less pronounced as the radial fluid flow in the crystallizer became more dominant. In that system borax crystals tend to be smaller, but more regularly shaped.  相似文献   

4.
An influence of impeller blade angle on the crystallization kinetics of borax has been investigated in detail. Its importance was studied in a batch crystallizer equipped with a four-blade turbine, whose angle was varied from 30° to 90°. Heterogeneous nucleation mechanism was dominant at all examined conditions, but the rate of nucleation significantly differed. Kinetic parameters of crystal growth were determined as well. Numerical values of order of crystal growth remain almost unchanged regardless of the blade angle. Different values of crystal growth rate constants are the result of the fluid dynamics in the crystallizer, caused by the different impeller blade inclinations. In all examined systems, crystal growth is integration limited. The transition from axial to radial flow, due to different blade angles, reflects on the crystal size distribution, agglomeration ratio, and crystallization yield.  相似文献   

5.
The growth of caverns, formed around rotating impellers in a yield stress fluid during mixing in a stirred vessel, has been studied by observing impeller speeds at which fluid motion was first observed at the vessel's wall and base, and at the free liquid surface. The effect of impeller geometry has been studied with a disk turbine (DT), a two bladed paddle (2BP), a pitched blade turbine (PBT) and a marine propeller (MP).

The presence of four baffles (10%) was found to increase the impeller speed at which the cavern reaches the vessel wall by 9% on average over that observed without baffles. After the cavern has reached the vessel walls, impeller type had a small effect upon the vertical expansion of the cavern with increasing impeller speed. Radial flow impellers (DT and 2BP), on average, performed better than an axial flow impeller (MP), with a mixed flow impeller (PBT) in between. Baffles significantly reduce the rate of this vertical expansion of the cavern. Clearance of the impeller from the vessel base had little effect upon the growth of the cavern above the impeller.  相似文献   

6.
In this paper, the results of the experimental studies of the mixing time, as well as the power consumption and baffle presence in the stirred tank with dual eccentrically located impellers are presented. The experiments were carried out in an unbaffled flat-bottomed cylindrical vessel. Three types of impellers were used: Rushton turbine, six pitched blade turbine and six flat blade turbine. The obtained data show that eccentricity of dual impeller systems leads to reduction of mixing time. Moreover, the experimental data confirmed the enlargement of power consumption in such systems. In the paper the analysis of relation between eccentricity ratio and mixing time has been performed.  相似文献   

7.
The growth of caverns, formed around rotating impellers in a yield stress fluid during mixing in a stirred vessel, has been studied by observing impeller speeds at which fluid motion was first observed at the vessel's wall and base, and at the free liquid surface. The effect of impeller geometry has been studied with a disk turbine (DT), a two bladed paddle (2BP), a pitched blade turbine (PBT) and a marine propeller (MP).

The presence of four baffles (10%) was found to increase the impeller speed at which the cavern reaches the vessel wall by 9% on average over that observed without baffles. After the cavern has reached the vessel walls, impeller type had a small effect upon the vertical expansion of the cavern with increasing impeller speed. Radial flow impellers (DT and 2BP), on average, performed better than an axial flow impeller (MP), with a mixed flow impeller (PBT) in between. Baffles significantly reduce the rate of this vertical expansion of the cavern. Clearance of the impeller from the vessel base had little effect upon the growth of the cavern above the impeller.  相似文献   

8.
The influence of hydrodynamic conditions on crystallization kinetics and properties of borax crystals obtained in a dual‐impeller batch cooling crystallizer was investigated. The two impellers used, i.e., pitched‐ and straight‐blade turbines, were mounted on the same shaft. Hydrodynamics was analyzed by means of the mixing time values and specific fluid flow patterns generated. Results indicate that wider metastable zones were generally observed at impeller positions characterized by longer mixing times. In those cases, the growth rate constants were lower, resulting in a formation of smaller but more regularly shaped crystals. These findings imply that the dual‐impeller position should be taken into account in order to produce crystals of desired characteristics.  相似文献   

9.
The study was carried out to simulate the 3D flow domain in the mixing of pseudoplastic fluids possessing yield stress with anchor impellers, using a computational fluid dynamics (CFD) package. The multiple reference frames (MRF) technique was employed to model the rotation of the impellers. The rheology of the fluid was approximated using the Herschel–Bulkley model. To validate the model, the CFD results for the power consumption were compared to the experimental data. After the flow fields were calculated, the simulations for tracer homogenization were performed to simulate the mixing time. The effects of impeller speed, fluid rheology, and impeller geometry on power consumption, mixing time, and flow pattern were explored. The optimum values of c/D (impeller clearance to tank diameter) and w/D (impeller blade width to tank diameter) ratios were determined on the basis of minimum mixing time.  相似文献   

10.
Mixing efficiency in two-phase gas–liquid agitated vessel is one of the important challenges in the industrial processes. Computational fluid dynamics technique (CFD) was used to investigate the effect of four different pitched blade impellers, including 15°, 30°, 45° and 60°, on the mixing quality of gas–liquid agitated vessel. The multiphase flow behavior was modeled by Eulerian–Eulerian multiphase approach, and RNG kε was used to model the turbulence. The CFD results showed that a strong global vortex plays the main role on the mixing quality of the gas phase in the vessel. Based on the standard deviation criterion, it was observed that the axial distribution of the gas phase in the 30° impeller is about 55% better than the others. In addition, the results showed that the 30° impeller has a uniform radial distribution over the other impellers and the maximum gas phase holdup in the vessel. Investigation of the power consumption of the impellers showed that the 30° impeller has the highest power consumption among the other pitched blade impellers. Also, examine the effect of same power condition for pitched blade impellers showed that the 30° impeller has the best mixing quality in this condition.  相似文献   

11.
The purpose of the present study is to observe the effect of the blade attack angle on the roll and trailing vortex structures in a stirred vessel via laser-Doppler velocimetry (LDV). In this investigation, four-bladed paddle impellers with four attack angles, which were 45°, 60°, 75° and 90°, respectively, were used. By synchronizing LDV with a rotary encoder coupled to the impeller shaft, angle-resolved measurements of all three velocity components were performed. This experimental method made it possible to capture the details of the vortical structure both behind the impeller blade and discharge region. Our study on the mean flow structure generated by three types of pitched blade turbines (45°, 60°, and 75°, respectively) found that a single trailing vortex was formed around each turbine blade. Roll-up of the vortex sheet issuing from the blade tip was also observed, which indicated a major roll of trailing vortex generation mechanism for each pitched blade turbine.  相似文献   

12.
Liquid phase mixing time (θmix) was measured in mechanically agitated contactors of internal diameter 0.57 m, 1.0 m and 1.5 m. Tap water was used as the liquid phase. The impeller speed was varied in the range of 0.4-9.0 r/s. Three types of impellers, namely disc turbine (DT), pitched blade downflow turbine (PTD) and pitched-blade upflow turbine (PTU) were employed. The ratio of impeller diameter to vessel diameter (D/T) and the ratio of impeller blade width to impeller diameter (W/D) were varied over a wide range. The effects of impeller clearance from the tank bottom (C), the blade angle (φ), the number of blades (nb), the blade thickness (k) and the total liquid height (H/T) were studied in detail. Mixing time was measured using the conductivity method.

Mixing time was found to have a strong dependance on the flow pattern generated by the impeller. Mixing time was found to decrease by decreasing the impeller clearance in the case of DT and PTU. However in the case of PTD it increases with a decrease in the impeller clearance. Similar trend of the effect of impeller clearance on θmix, was observed for all the other PTD impellers with different diameter, number of blades and blade angle (except 60° and 90°). All the impeller designs were compared on the basis of power consumption and on this basis optimum design recommendations have been made. For PTD impellers, a correlation has been developed for the dimensionless mixing time.  相似文献   

13.
Rate of gas induction, static pressure, mixing time and power consumption have been measured in 0.57 m i.d. vessel. Different types of impellers namely shrouded disc turbine, shrouded curved blade turbine and pitched blade turbine were used. The impeller diameter was varied from 0.15-0.25 m and the impeller speed was varied from 3 to 20 r/s.

The pitched blade turbine was found to give 30-60 per cent higher rates of gas induction as compared with the best design reported in the literature. The mixing time was found to be lower by a similar magnitude. Moreover in the case of pitched blade turbine it was found that the gas was getting induced radially as well as axially. This eliminates the necessity of the diffuser and hence reducing the complexities in the mechanical structure.  相似文献   

14.
The vast majority of solid–liquid mixing studies have focused on high Reynolds number applications with configurations and impeller geometries adapted to this type of regime. However, the mixing of particles in a viscous fluid is an essential element of many contemporary industries. We used the computational fluid dynamics-discrete element method model previously developed in our group to investigate solid–liquid mixing with close-clearance impellers in the laminar regime of operation. We compared different geometries, that is, the double helical ribbon, anchor, Paravisc, and Maxblend impellers. We investigated the impact of fluid viscosity and compared the results with those obtained with the pitched blade turbine, a more commonly used impeller, based on power consumption for equivalent mixing states. This study highlights that the higher the viscosity of the fluid, the more interesting it is to use close-clearance impellers for their ability to generate a strong shear stress and a strong bulk flow in the entire vessel.  相似文献   

15.
Experiments have been performed to study the effect of the density and the volume of the tracer pulse on the mixing time for two impeller combinations in the presence of gas in a 0.3 m diameter and 1 m tall cylindrical acrylic vessel. The tall multi-impeller aerobic fermenters, which require periodic dosing of nutrients that are in the form of aqueous solution, is a classic case under consideration. Conductivity measuring method was used to measure the mixing time. Two triple impeller combinations; one containing two pitched blade downflow turbines as upper impellers and disc turbine as the lowermost impeller (2 PBTD-DT) and another containing all pitched blade downflow turbines (3 PBTD) have been used. Other variables covered during experiments were the density and the amount of the tracer pulse, the impeller rotational speed and the gas superficial velocity. Fractional gas hold-up, Power consumption and mass transfer coefficient have also been measured for both the impeller combinations. Influence of aeration and impeller speed on the mixing time has been explained by the interaction of air induced and impeller generated liquid flows. Three different flow regimes have been distinguished to explain the hydrodynamics of the overall vessel (i.e., multiple impeller system). A compartment model with the number of compartments varying with the flow regimes have been used to model liquid phase mixing in these flow regimes. A correlation for the prediction of the dimensionless mixing time in the loading regime has been proposed in order to account the effect of the density and the amount of the tracer pulse on the mixing time. Correlations have also been proposed to predict fractional gas hold-up and kLa.  相似文献   

16.
A characterisation of three commonly used impellers was made in this study by measuring local mean velocities and the fluctuations of these velocities with the LDV technique. The data was used to estimate volumetric flow, velocity fluctuations and turbulent intensity in the impeller region of the tank. The impellers investigated were a high flow impeller, a pitched blade turbine and a Rushton turbine. The cylindrical vessel used was made of Perspex, had a dished bottom (DIN 28013), was equipped with four baffles and had an inner diameter of 0.45 m. It was found that the bulk velocities could be scaled with the tip-speed of the impeller (ND). The flow rate at constant impeller speed increased in the order high flow impeller — Rushton turbine — pitched blade turbine. The corresponding order for the turbulence fluctuation is: high flow impeller — pitched blade turbine — Rushton turbine. The velocity profile of the flow out from the high flow impeller was furthermore, not as smooth as could be expected.  相似文献   

17.
The strategic approach of this article is to characterize the continuous-flow mixing of pseudoplastic fluids possessing yield stress in a stirred reactor with the Maxblend impeller. Dynamic experiments were carried out through the frequency-modulated random binary input of a brine solution to determine the extent of non-ideal flows. Mixing quality was determined on the basis of the extent of channeling and fully mixed volume. The effects of important parameters such as impeller speed (25–500 rpm), absence of baffles, fluid rheology (0.5–1.5%), fluid flow rate (3.20–14.17 L min−1), and the locations of inlet/outlet on the dynamic performance of the continuous-flow mixing vessel were explored. The performance of the Maxblend impeller was then compared to the performances of various types of impellers such as close-clearance (an anchor), axial-flow (a Lightnin A320), and radial-flow (a Scaba 6SRGT) impellers. It was found when the channeling approached zero and the fully mixed volume approached the total fluid volume in the vessel, the power drawn by the A320 impeller and the Scaba impeller were about 2.9 and 4.3 times greater than that of the Maxblend impeller. Thus, the Maxblend impeller was able to drastically improve the performance of continuous-flow mixing with huge power savings. The mixing quality was further improved by optimizing the impeller speed, decreasing the fluid flow rate, decreasing the fluid concentration, and using bottom inlet- top outlet configuration. The flow non-ideality of the mixing system increased in the absence of the baffles. Thus, better mixing quality and more energy savings can be achieved by employing the findings of this study.  相似文献   

18.
三叶后掠-HEDT组合桨搅拌釜内流场的模拟及实验   总被引:1,自引:0,他引:1       下载免费PDF全文
周勇军  袁名岳  徐昊鹏  何华  孙建平 《化工学报》2019,70(12):4599-4607
对应用于聚乙烯聚合反应中的三叶后掠-HEDT组合桨的搅拌釜内流场进行了模拟研究,分析组合桨的离底距C 1、桨间距C 2以及转速N的变化对搅拌釜内流场的影响,利用PIV实验对模拟结果进行了验证;将该组合桨与三叶后掠-六直叶圆盘涡轮组合桨进行了模拟对比研究。结果表明:当桨间距与釜内径的比为0.35时,釜内桨叶间的流体流动效果最好,该条件下能够改善搅拌釜上层流体的速度分布;当离底距与釜内径的比值为0.29时,组合桨下方出现了整体的环流,有利于釜底流体的混合;桨叶转速N=90 r/min时釜内流体速度分布均匀,同时上层HEDT桨叶产生的射流方向趋于水平。两种组合桨的对比研究表明:二者流型相近,但前者搅拌功率能够得到明显降低。研究结果可为三叶后掠-HEDT组合桨在聚乙烯聚合反应釜中的工程应用提供参考。  相似文献   

19.
在传统三斜叶桨的基础上,结合逆流桨结构,提出三斜叶逆流桨,以破坏或者消除搅拌槽内稳定的对称性流场结构,提高流体传递效率及混沌混合程度。结合实验和模拟两种方法,主要研究了上推式三斜叶桨(PBTU)、外推内压式三斜叶逆流桨(PBTC-U)、外压内推式三斜叶逆流桨(PBTC-D)三种桨叶体系以及不同外层桨叶长度的PBTC-U桨体系内搅拌功耗、混合时间、混沌特性参数、流场结构以及流体速度分布。实验结果表明,N=130 r/min时,PBTC-U桨相对于PBTU桨和PBTC-D桨,体系混合时间分别从22.0、37.5 s缩短到16.5 s,功耗分别降低了5.6%和12.8%,LLE值分别提高了13.69%和37.01%。在确定PBTC-U桨适宜外层桨叶长度的研究中发现当外层桨叶长度D2=0.375D时,搅拌功耗最低且混合时间最短。PBTC-U型逆流桨通过内外层桨叶的逆流作用,强化体系内流体的随机运动,使得流场的不稳定性得到增强,对称性被破坏,进而流场结构失稳,流体混合效率得到提高。另外,PBTC-U桨可以增强流体轴、径向速度分布的波动性,有利于提高体系的混合效率。  相似文献   

20.
In this study a combination of computational fluid dynamics (CFD) and multiblock model is used for modelling crystal growth in a 100 dm3 suspension crystallizer equipped with two turbine impellers. Local hydrodynamics and crystal suspension densities were modelled using CFD. Simulation results were compared with experimental results to verify flow profile and slip velocities (Hatakka et al., 2008, 2009), and classification of crystals. Results from CFD simulations were then translated to a proper form and used as input data for the multiblock model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号