首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
ABSTRACT

A novel series of PVA/DPA-4-SASS/SiO2 composite membranes were fabricated and characterized in the present study. Compared to the neat PVA, water uptake, proton conductivity, and ion exchange capacity of the membranes were enhanced. The membrane containing 5 Wt. % of SiO2 nanoparticles and 80 Wt. % of the DPA-4-SASS showed the highest values of water uptake, proton conductivity (1.5 × 10?1 S/cm) and ion exchange capacity (1.47 mmol/g). The results also indicated that methanol permeability was decreased by increasing the DPA-4-SASS content in the hybrid membranes. Thermal stability and mechanical properties of the cross-linked membranes were also improved.  相似文献   

2.
Thiol-functionalized mesoporous poly (vinyl alcohol)/SiO2 composite nanofiber membranes and pure PVA nanofiber membranes were synthesized by electrospinning. The results of Fourier transform infrared (FTIR) indicated that the PVA/SiO2 composite nanofibers were functionalized by mercapto groups via the hydrolysis polycondensation. The surface areas of the PVA/SiO2 composite nanofiber membranes were >290 m2/g. The surface areas, pore diameters and pore volumes of PVA/SiO2 composite nanofibers decreased as the PVA content increased. The adsorption capacities of the thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes were greater than the pure PVA nanofiber membranes. The largest adsorption capacity was 489.12 mg/g at 303 K. The mesoporous PVA/SiO2 composite nanofiber membranes exhibited higher Cu2+ ion adsorption capacity than other reported nanofiber membranes. Furthermore, the adsorption capacity of the PVA/SiO2 composite nanofiber membranes was maintained through six recycling processes. Consequently, these membranes can be promising materials for removing, and recovering, heavy metal ions in water.  相似文献   

3.
ABSTRACT

Nanocomposite (NC) films of poly vinyl alcohol (PVA) incorporated with varying amounts of perovskite lanthanum cuprate (La2CuO4) nanoparticles (NPs) have been fabricated by solution intercalation technique. TEM result showed the size of NPs between 91-134nm. The effects of NPs content on structural and morphological behaviors of PVA have been established by XRD, FTIR and SEM methods. Electrical properties of NC films were performed using LCR-meter. Current (I)–voltage (V) data displayed dc-conductivity increased with increasing NPs content and trends of I–V indicate the dominant Ohmic behavior at voltage <5V and above that Poole–Frenkel emission is the dominant conduction mechanism. Ac-conductivity increases with increase in frequency and dosage of NPs. The maximum ac-conductivity obtained in this investigation is 2.43X10?5S/cm for PVA/2wt% La2CuO4 with lowest activation energy of 0.147 eV at 25°C. Cyclic voltammetry (CV) revealed the specific capacitance of PVA-NC improved compared to pristine PVA. The reduction in Tg with increment NPs contents was observed. The optical behaviors of NCs were deduced by UV-visible spectroscopy where the result showed band gap energy was reduced from 5.23eV to 3.25eV whereas refractive index increased from 1.71 to 2.44 for pure PVA and PVA/2wt%La2CuO4, respectively.  相似文献   

4.
Using Na+ form of perfluorosulfonic acid (PFSA) and poly(vinyl alcohol) (PVA) as coating materials, polysulfone (PSf) hollow fiber ultrafiltration membrane as a substrate membrane, PFSA‐PVA/PSf hollow fiber composite membrane was fabricated by dip‐coating method. The membranes were post‐treated by two methods of heat treatment and by both heat treatment and chemical crosslinking. Maleic anhydride (MAC) aqueous solution was used as chemical crosslinking agent using 0.5 wt % H2SO4 as a catalyst. PFSA‐PVA/PSf hollow fiber composite membranes were used for the pervaporation (PV) separation of isopropanol (IPA)/H2O mixture. Based on the experimental results, PFSA‐PVA/PSf hollow fiber composite membrane is suitable for the PV dehydration of IPA/H2O solution. With the increment of heat treatment temperature, the separation factor increased and the total permeation flux decreased. The addition of PVA in PFSA‐PVA coating solution was favorable for the improvement of the separation factor of the composite membranes post‐treated by heat treatment. Compared with the membranes by heat treatment, the separation factors of the composite membranes post‐treated by both heat treatment and chemical crosslinking were evidently improved and reached to be about 520 for 95/5 IPA/water. The membranes post‐treated by heat had some cracks which disappeared after chemical crosslinking for a proper time. Effects of feed temperature on PV performance had some differences for the membranes with different composition of coating layer. The composite membranes with the higher mass fraction of PVA in PFSA‐PVA coating solution were more sensitive to temperature. It was concluded that the proper preparation conditions for the composite membranes were as follows: firstly, heated at 160°C for 1 h, then chemical crosslinking at 40°C for 3 h in 4% MAC aqueous solution. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

5.
Three soluble hyperbranched polyazomethines containing oligosiloxane end group HBP-PAZ-SiOn were successfully synthesized. HBP-PAZ-SiOns were used as modifiers of ethyl cellulose (EC) and polysulfone (PS) membranes. Blend membranes, HBP-PAZ-SiOn/EC and HBP-PAZ-SiOn/PS were prepared by blending the THF solution of HBP-PAZ-SiOn with ethanol solution of EC and dichloromethane solution of PS, respectively. Surprisingly, the permeabilities for CO2 of the blend membranes were more than 15–16 times higher than those of pure EC and PS membranes without any drop of pemselectivity to N2. This unusual improvement has been achieved by both enhancement of diffusivity for carbon dioxide and nitrogen by the oligosiloxane groups and enhancement of affinity of the amino groups with carbon dioxide at the end groups of HBP-PAZ-SiOn.  相似文献   

6.
Water‐swollen hydrogel (WSH) membranes for gas separation were prepared by the dip‐coating of asymmetric porous polyetherimide (PEI) membrane supports with poly(vinyl alcohol) (PVA)–glutaraldehyde (GA), followed by the crosslinking of the active layer by a solution method. Crosslinked PVA/GA film of different blend compositions (PVA/GA = 1/0.04, 0.06, 0.08, 0.10, 0.12 mol %) were characterized by differential scanning calorimetry (DSC) and their water‐swelling ratio. The swelling behavior of PVA/GA films of different blend compositions was dependent on the crosslinking density and chemical functional groups created by the reaction between PVA and GA, such as the acetal group, ether linkage, and unreacted pendent aldehydes in PVA. The permeation performances of the membranes swollen by the water vapor contained in a feed gas were investigated. The behavior of gas permeation through a WSH membrane was parallel to the swelling behavior of the PVA/GA film in water. The permeation rate of carbon dioxide through the WSH membranes was 105 (cm3 cm?2 s?1 cmHg) and a CO2/N2 separation factor was about 80 at room temperature. The effect of the additive (potassium bicarbonate, KHCO3) and catalyst (sodium arsenite, NaASO2) on the permeation of gases through these WSH membranes was also studied. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1785–1791, 2001  相似文献   

7.
TiO2 nanoparticles (50–80 nm) are produced by simple nanomilling by stirred media mill. Reasonably high purity TiO2 nanoparticles are observed by inductively coupled plasma atomic emission spectroscopy. Thus, the prepared TiO2 nanoparticles are applied as inorganic nanofillers for direct methanol fuel cell nanocomposite proton-exchange membranes. Cross-linked sulphonated polyvinyl alcohol is used for membrane preparation. Water uptake and ion exchange capacity of membranes are observed to be enhanced due to increase in concentration of nanoparticles. Very high proton conductivity and extremely diminutive methanol permeability are achieved. In addition, the durability and lifetime is observed to be exceptionally good (>2000 h).

Abbreviations: DW: Deionised water; DLS: Dynamic light scattering; DMFC: Direct methanol fuel cell; DMSO: Dimethyl sufoxide; DSDSBA: 4-formylbenzene-1,3-disulphonic acid disodium salt hydrate; GA: Glutaraldehyde; FTIR: Fourier transform infrared spectroscopy; ICP-AES: Inductively coupled plasma atomic emission spectroscopy; IEC: Ion exchange capacity; MCO: Methanol crossover; MO2: Metallic oxides; Na-PAA: Sodium-polyacrylic acid; PEM: Proton exchange membrane; PEMFC: Proton-exchange membrane fuel cells; PSD: Particle size distribution; PVA: Poly vinyl alcohol; RH: Relative humidity; SEM: Scanning electron microscopy; SPEEK: Sulphonated poly (ether ether ketone); SPVA: Sulphonated polyvinyl alcohol; SPVA (5%): composite polymer membrane with 5% TiO2; SPVA (10%): composite polymer membrane with 10% TiO2; SPVA (15%): composite polymer membrane with 15% TiO2; TEM: Transmission electron microscope; TG-DSC: Thermo gravimetric differential scanning  相似文献   


8.
Using poly(vinyl alcohol) (PVA) with highly hydrophilic properties as membrane material and poly(ethylene glycol) (PEG) as an additive, we prepared PVA/tetraethoxysilane (TEOS) ultrafiltration (UF) membranes with good antifouling properties by a sol–gel method. The PVA/TEOS UF membranes were characterized by X‐ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron microscopy, and static contact angle of measurement of water. The hybridization of TEOS to PVA for preparing the PVA/TEOS UF membranes achieved the required permeation performance and good antifouling behaviors. The morphology and permeation performance of the PVA/TEOS membranes varied with the different TEOS loadings and PEG contents. The pure water fluxes (JW) increased and the rejections (Rs) decreased with increasing TEOS loading and PEG content. The PVA/TEOS UF membrane with a PVA/TEOS/PEG/H2O composition mass ratio of 10/3/4/83 in the dope solution had a JW of 66.5 L m?2 h?1 and an R of 60.3% when we filtered it with 300 ppm of bovine serum albumin aqueous solution at an operational pressure difference of 0.1 MPa. In addition, the filtration and backwashing experiment proved that the PVA/TEOS membranes possessed good long‐term antifouling abilities. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4066–4074, 2013  相似文献   

9.
Chemically stable nanofiltration (NF) composite membranes based on poly(vinyl alcohol) (PVA) and sodium alginate (SA) (hereafter, these membranes are called PVA/SA composite membranes) were prepared by coating microporous polysulfone (PSF) supports with dilute PVA/SA blend solutions. The PSF supports were pretreated with small monomeric compounds to reduce their pore size and to improve their hydrophilicity before coating with the PVA/SA blend solutions. The concentration of the PVA/SA blend solutions ranged from 0.1 to 0.3 wt %. The membranes prepared in this study were characterized with various methods such as SEM, FTIR, permeation tests, and z‐potential measurements. Especially, chemical stabilities of the membranes were tested, using three aqueous solutions with different pHs such as a HCl solution (pH 1), a K2CO3 solution (pH 12.5), and a NaOH solution (pH 13). Their chemical stabilities were compared with that of a polyamide (PA) composite membrane prepared from piperazine (PIP) and trimesoyl chloride (TMC). In this study, it was found that the PVA/SA composite membranes prepared showed not only good chemical stabilities but also good permeation performances in the range from pH 1 to 13. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2471–2479, 2001  相似文献   

10.
The development of carbon dioxide (CO2) separation technology is crucial for mitigating global climate change and promoting sustainable development. In this study, we successfully synthesized an array of cross-linked poly(vinyl alcohol) (PVA) membranes, xALD-PEG-ALD-c-PVA, with enhanced CO2/N2 separation performance by employing dialdehyde polyethylene glycol (ALD-PEG-ALD) as a cross-linker. The formation of the cross-linked network structure not only inhibits the crystallization of PVA but also disrupts hydrogen bonding and thus increases fractional free volume of PVA chains. Under the synergistic effect of these multiple factors, the cross-linked PVA membranes exhibit a significantly improved CO2 permeability. Moreover, they maintain high CO2/N2 selectivity, attributing to the CO2-philic characteristic of ethylene oxide groups in the cross-linked structure. At the ALD-PEG-ALD content of 1.6 mmol g−1, the xALD-PEG-ALD-c-PVA membrane demonstrates a CO2 permeability of 41.4 barrer and a CO2/N2 selectivity of 57.4 at 2 bar and 25°C. Furthermore, compared with the pristine PVA membrane, xALD-PEG-ALD-c-PVA membranes manifest superior mechanical properties and outstanding separation performance for a CO2/N2 (15/85, vol%) gas mixture. The excellent combination of permeability and selectivity makes xALD-PEG-ALD-c-PVA membranes highly promising for various CO2 separation applications.  相似文献   

11.
The effect of the modification of the polyvinyl alcohol (PVA) selective layer of thin film composite (TFC) membranes by aluminosilicate (Al2O3·SiO2) nanoparticles on the structure and pervaporation performance was studied. For the first time, PVA-Al2O3·SiO2/polyacrylonitrile (PAN) thin film nanocomposite (TFN) membranes for pervaporation separation of ethanol/water mixture were developed via the formation of the selective layer in dynamic mode. Selective layers of PVA/PAN and PVA-Al2O3·SiO2/PAN membranes were formed via filtration of PVA aqueous solutions or PVA-Al2O3·SiO2 aqueous dispersions through the ultrafiltration PAN membrane for 10 min at 0.3 MPa in dead-end mode. Average particle size and zeta potential of aluminosilicate nanoparticles in PVA aqueous solution were analyzed using the dynamic light scattering technique. Structure and surface properties of membranes were studied using scanning electron microscopy (SEM), atomic force microscopy (AFM) and water contact angle measurements. Membrane performance was investigated in pervaporation dehydration of ethanol/water mixtures in the broad concentration range. It was found that flux of TFN membranes decreased with addition of Al2O3·SiO2 nanoparticles into the selective layer due to the increase in selective layer thickness. However, ethanol/water separation factor of TFN membranes was found to be significantly higher compared to the reference TFC membrane in the whole range of studied ethanol/water feed mixtures with different concentrations, which is attributed to the increase in membrane hydrophilicity. It was found that developed PVA-Al2O3·SiO2/PAN TFN membranes were more stable in the dehydration of ethanol in the whole range of investigated concentrations as well as at different temperatures of the feed mixtures (25 °C, 35 °C, 50 °C) compared to the reference membrane which is due to the additional cross-linking of the selective layer by formation hydrogen and donor-acceptor bonds between aluminosilicate nanoparticles and PVA macromolecules.  相似文献   

12.
Triplex hybrid nanofiller (CaNiAl2O5) have been synthesized by sol-gel method and its nanocomposite (NC) films were incorporated with poly vinyl alcohol (PVA). The scanning electron microscopy (SEM) was used to probe morphological behaviors and dispersion of CaNiAl2O5 in PVA matrix. In order to probe the microstructure X-ray diffraction (XRD) and FTIR were performed on PVA/CaNiAl2O5 NCs. Based on the results of both XRD and transmission electron microscopy (TEM), the average particle size of the CaNiAl2O5 lies in the range 7–15 nm. The current (I) – voltage (V) behaviors were studied using LCR-meter at room temperature. The dc-conductivity increases with increasing in both CaNiAl2O5 at different voltages. The dielectric constant exhibits higher values at lower frequency and increases with nanoparticle (NP) loading due to increase in polarization particles in polymer matrix. The ac conductivity tends to increase with increase frequency and NPs content. The cyclic voltammetric data indicate the NC with 8wt% NPs exhibit higher specific capacitance as compared with PVA. The optical constants of the NCs were evaluated from UV-Visible spectra. The band gap energies has a blue shift from 4.4 eV (PVA) to 2.8 eV (PVA/8wt% CaNiAl2O5), whereas refractive index (RI) and the optical conductivity of NCs increased with an increasing in NPs content.  相似文献   

13.
Tetracycline hydrochloride loaded poly(vinyl alcohol)/soybean protein isolate/zirconium (Tet–PVA/SPI/ZrO2) nanofibrous membranes were fabricated via an electrospinning technique. The average diameter of the PVA/soybean protein isolate (SPI)/ZrO2 nanofibers used as drug carriers increased with increasing ZrO2 content, and the nanofibers were uneven and tended to stick together when the ZrO2 content was above 15 wt %. The Tet–PVA/SPI/ZrO2 nanofibers were similar in morphology when the loading dosage of the model drug tetracycline hydrochloride was below 6 wt %. The PVA, SPI, and ZrO2 units were linked by hydrogen bonds in the hybrid networks, and the addition of ZrO2 improved the thermostability of the polymer matrix. The Tet–PVA/SPI/ZrO2 nanofibrous membranes exhibited good controlled drug‐release properties and antimicrobial activity against Staphylococcus aureus. The results of this study suggest that those nanofibrous membranes were suitable for drug delivery and wound dressing. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40903.  相似文献   

14.
Ethanediamine‐modified zeolitic imidazolate framework (ZIF)‐8 particles (ZIF‐8‐NH2) is synthesized and incorporated in the poly(vinyl alcohol) (PVA) matrix to fabricate novel PVA/ZIF‐8‐NH2 mixed matrix membranes (MMMs) for pervaporation dehydration of ethanol. The PVA/ZIF‐8‐NH2 MMMs exhibit enhanced membrane homogeneity and separation performance because of the higher hydrophilicity and restricted agglomeration of the particles, as compared to corresponding MMMs loaded with unmodified particles. The effect of ZIF‐8‐NH2 loading in the MMMs is studied and the MMM with a 7.5 wt % ZIF‐8‐NH2 loading shows the best pervaporation performance for ethanol dehydration at 40°C. Various characterization techniques (Fourier transform infrared, scanning electron microscope, contact angle, sorption test, etc.) are used to investigate the MMMs loaded with ZIF‐8 and ZIF‐8‐NH2 particles. The impact of operation conditions on pervaporation performance is also performed. The performance benchmarking shows that the MMMs have superior separation factors and comparable flux to most other PVA hybrid membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1728–1739, 2016  相似文献   

15.
Currently, the rising environmental concerns caused by nonbiodegradable food packaging materials have promoted the research and development of biodegradable alternatives. Polyvinyl alcohol (PVA) was selected as the substrate, and zinc oxide nanoparticles (ZnONPs) and titanium dioxide nanoparticles (TiO2NPs) were blended and modified with PVA, respectively. Based on the electrostatic spinning technology to prepare fiber membranes with high strength and UV blocking properties for grapes preservation. The study indicated that the tensile strength of PVA fiber membranes increased by 243% and 209% when ZnONPs and TiO2NPs were added at 1%, respectively. Under UV radiation, the PVA/ZnO composite membranes exhibited superior UV absorption than the PVA/TiO2 composite membranes. After conducting TG tests, it was found that the addition of ZnONPs decreased the thermal stability of the fiber membranes, while TiO2NPs could improve the thermal stability. Both composite membranes could extend grapes' shelf life, but the PVA/ZnO composite membranes were more effective at maintaining freshness than the PVA/TiO2 composite membranes.  相似文献   

16.
Poly(vinyl alcohol) (PVA) was reacted with strong base NaH to yield pendant oxy anions, followed with nucleophilic addition to C60. The resulted PVA(C60-Na+)n products were then converted to PVA(C60H)n by stirring with a strong acid cation exchanger of H+-form. Extraction of the C60-containing PVAs by toluene, which is a good solvent for C60, exhibits no color transfer to the toluene phase. The C60-containing PVAs were identified by the characteristic IR and UV-Vis absorptions of C60. The electrochemical behaviors in solution or in film state were investigated by cyclic voltammetric methods. The cyclic voltammogram of 4a shows a reduction peak at −2.30 V which should be due to the bonded C60 chromophores. In the film state, obtained by coating C60-containing PVA solution on graphite electrode, PVA(C60-Na+)n is much easily reduced and oxidized than PVA(C60H)n. Furthermore, the difference in this reduction and oxidation feasibility is enhanced with increasing C60 content. However, coating with PVA(C60H)n or PVA(C60-Na+)n reduces the redox ability of the graphite electrode.  相似文献   

17.
《分离科学与技术》2012,47(9):1327-1343
Abstract

Nonsupported alumina porous membranes without pinholes or cracks were prepared by the sol-gel process using aluminum sec-butoxide as the starting material. The effects of using different PVA contents at various calcination temperatures on the characteristics of the membrane were investigated by scanning electron microscopy and nitrogen sorption porosimetry. The results after calcining at 450°C for 5 hours showed that the range of pore size distributions increases with increasing PVA concentration. The active nucleus numbers of phase transition to α-alumina decreased as the content of PVA increased at about 1050°C. The morphology of unsupported alumina membranes was affected by the PVA concentration and calcination temperature.  相似文献   

18.
ABSTRACT

Novel tertiary nanocomposite films comprising of poly (vinyl alcohol) (PVA), poly (4-styrenesulfonic acid) (PSSA) and titanium dioxide (TiO2) nanoparticles (NPS) were prepared using simple solvent casting method. The structural, thermal, morphological, thermo-mechanical and electromagnetic interference (EMI) shielding properties of PVA/PSSA/TiO2 nanocomposite films were investigated. The EMI shielding effectiveness (SE) of PVA/PSSA/TiO2 nanocomposite films in the X and Ku band was found to be 12 dB and 13 dB respectively at 25 wt% TiO2 NPs loading. These results demonstrate the possible applications of PVA/PSSA/TiO2 nanocomposite films as low cost, lightweight and flexible material for EMI shielding.  相似文献   

19.
We report polyvinyl alcohol (PVA)-based hybrid membranes composed of salt of lignin sulfonic acid (LSA) and tetraethyl orthosilicate. The concentration of LSA with respect to PVA varied from 10% to 40%. The hybrid membranes showed water uptake (WU) in the range of 122–210%, ion exchange capacities in the range of 0.32–0.75 mmol g?1, dialysis coefficient (UOH) from 0.0068 to 0.0119 m h?1, and selectivity (S) from 15 to 26. The hybrid membranes also showed thermal and mechanical stability.  相似文献   

20.
ABSTRACT

In this study, electrolyte materials were synthesized by mixing a highly conducting salt (K2CO3) with the poly(vinyl alcohol) (PVA) in different proportions (from 10 to 50 wt.%). The synthesized electrolyte was characterized using Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) for their functional groups, morphology, thermal stability, glass transition temperature (Tg ), ionic conductivity, and potential window, respectively. Characterization results show that the complex formation between PVA and K2CO3 salt has been established by FTIR spectroscopic study, which indicates the detailed interaction between PVA and the salts in PVA-K2CO3 composites while the amorphous nature of the electrolyte after incorporation of the salts has been confirmed by FESEM analysis. Similarly, TGA and DSC analysis revealed that both decomposition temperature and Tg of the synthesized electrolytes decrease with the addition of K2CO3 due to the strong plasticizing effect of the salt. The results confirm that the electrolytes have sufficient thermal stability for supercapacitor operation, as well as an amorphous phase to effectively deliver high ionic conductivity. The highest ionic conductivity of 4.53 × 10?3 S cm?1 at 373 K and potential window of 2.7 V was exhibited by PK30 (30 wt.% K2CO3), which can be considered as high value for solid-state electrolytes which are superior to those electrolytes from PVA salts earlier reported. The results similarly show that the prepared electrolyte is temperature-dependent as conductivity increase with increase in temperature. Based on these properties, it can be imply that the PVA-K2CO3 gel polymer electrolyte (GPE) could be a promising electrolyte candidate for EDLC applications. The results indicate that the PVA-K2CO3 as a new electrolyte material has great potential in practical applications of portable energy-storage devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号