首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, Yb/Tm) hexagonal microrods have been successfully synthesized through a facile molten salt method without any surfactant. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectra were used to characterize the samples. It is found that at a preferred reaction temperature of 400 °C, the structure of β-NaYF4 can gradually transform from microtubes to microrods as reaction time extends from 0.5 to 4 h. Furthermore, as the molar ratio of NaF:RE3+ (RE represents the total amount of Y3+ and the doped rare earth elements such as Eu3+, Tb3+, Yb3+/Er3+, or Yb3+/Tm3+) increased, the phase of sample transforms from YF3 into NaYF4. Under the excitation of 395 nm ultraviolet light, β-NaYF4:5 %Eu3+ shows the emission lines of Eu3+ corresponding to 5D0-3 → 7F J (J = 1–4) transitions from 400 to 700 nm, resulting in red down-conversion (DC) light emission. When doped with 5 % Tb3+ ions, the strong DC fluorescence corresponding to 5D4 → 7F J (J = 6, 5, 4, 3) transitions with 5D4 → 7F J (green emission at 544 nm) being the most prominent group that has been observed. Moreover, upon 980 nm laser diode excitation, the Yb3+/Er3+- and Yb3+,Tm3+- co-doped β-NaYF4 samples exhibit bright yellow and blue upconversion (UC) luminescence, respectively, by two- or three-photon UC process. The luminescence mechanisms for the doped lanthanide ions were thoroughly analyzed.  相似文献   

2.
3.
LaOCl:Yb3+, Er3+ nanofibers and hollow nanofibers were prepared by electrospinning combined with a double-crucible chlorination technique using NH4Cl as chlorinating agent. X-ray powder diffraction analysis indicated that LaOCl:Yb3+, Er3+ nanostructures were tetragonal with space group P4/nmm. Scanning electron microscope analysis and histograms revealed that diameters of LaOCl:Yb3+, Er3+ nanofibers and hollow nanofibers, respectively, were 117.87 ± 15.48 and 141.09 ± 17.10 nm under the 95 % confidence level. Up-conversion (UC) emission spectra analysis manifested that LaOCl:Yb3+, Er3+ nanostructures exhibited strong green and red UC emission centering at 526, 548, and 671 nm, respectively, attributed to 2H11/2 → 4I15/2, 4S3/2 → 4I15/2, and 4F9/2 → 4Il5/2 transitions of Er3+ ions under the excitation of a 980-nm diode laser. It was found that the relative intensities of green and red emissions vary obviously with the addition of Yb3+ ions, and the optimized molar ratio of Yb3+ to Er3+ was 10:1 in the as-prepared nanofibers. Moreover, the near-infrared characteristic emissions of LaOCl:Yb3+, Er3+ nanostructures were achieved under the excitation of a 532-nm laser. CIE analysis demonstrated that color-tuned luminescence can be obtained by changing doping concentration of Yb3+ (and/or Er3+) ions and morphologies of nanomaterials, which could be applied in the fields of optical telecommunication and optoelectronic devices. The UC luminescent mechanism and the formation mechanisms of LaOCl:Yb3+, Er3+ nanofibers and hollow nanofibers were also proposed.  相似文献   

4.
LnBaFeCoO5 + δ (Ln = Nd, Sm, Gd) layered oxides have been synthesized and their crystal structure, thermal stability, thermal expansion, electrical conductivity, thermoelectric power, and magnetic susceptibility have been studied. The oxides have a tetragonal structure (sp. gr. P4/mmm) with unit-cell parameters a = 0.3909(2) nm and c = 0.7695(6) nm for Ln = Nd (δ = 0.65), a = 0.3908(3) nm and c = 0.7662(6) nm for Ln = Sm (δ = 0.37), and a = 0.3908(2) nm and c = 0.7613(6) nm for Ln = Gd (δ = 0.37). The LnBaFeCoO5 + δ compounds are antiferromagnetic p-type semiconductors. With decreasing Ln3+ ionic radius, their electrical conductivity and linear thermal expansion coefficient decrease and their thermoelectric power and antiferromagnetic ordering temperature increase. Near 518–653 K, the linear thermal expansion coefficient of the LnBaFeCoO5 + δ oxides increases from (12.9–16.6) × 10?6 to (19.3–26.5) × 10?6 K?1, which is due to the release of weakly bound oxygen from the oxides. We have determined parameters of charge transport in the [Fe(Co)O2] layers in the crystal structure of the LnBaFeCoO5 + δ phases.  相似文献   

5.
《Materials Research Bulletin》2013,48(11):4889-4895
Poly(vinyl pyrrolidone)/CoFe2O4 nanocomposite has been fabricated by a sol–gel auto-combustion method. Poly(vinyl pyrrolidone) was used as a reducing agent as well as a surface capping agent to prevent particle aggregation and stabilize the particles. The average crystallite size estimated from X-ray line profile fitting was found to be 20 ± 7 nm. The high field irreversibility and unsaturated magnetization behaviours indicate the presence of the core–shell structure in the sample. The exchange bias effect observed at 10 K suggests the existence of the magnetically aligned core surrounded by spin-disordered surface layer. The reduced remanent magnetization value of 0.6 at 10 K (higher than the theoretical value of 0.5) shows the PVP/CoFe2O4 nanocomposite to have cubic magnetocrystalline anisotropy according to the Stoner–Wohlfarth model.  相似文献   

6.
Journal of Materials Science - The CuFeCr0.5Ni0.5O4 (CFO) compound was synthesized using sol–gel reaction combustion technic. The structural analysis showed that the obtained composites have...  相似文献   

7.
LaOCl:Yb3+, Er3+ nanobelts were prepared by electrospinning combined with a double-crucible chlorination technique using NH4Cl as chlorinating agent. X-ray powder diffraction analysis indicated that LaOCl:Yb3+, Er3+ nanobelts were tetragonal with space group P4/nmm. Scanning electron microscope analysis and histograms revealed that width of LaOCl:Yb3+, Er3+ nanobelts was 6.12 ± 0.18 μm under the 95% confidence level, and the thickness was 113 nm. Transmission electron microscope observation showed that as-obtained LaOCl:Yb3+, Er3+ nanobelts were composed of nanoparticles. LaOCl:Yb3+, Er3+ nanobelts emitted strong green and red up-conversion emission centring at 523, 551 and 667 nm, respectively, attributed to 2H11/24I15/2, 4S3/24I15/2 and 4F9/24Il5/2 transitions of Er3+ under the excitation of a 980-nm diode laser (DL) excitation. Moreover, the near-infrared characteristic emission of LaOCl:Yb3+, Er3+ nanobelts was achieved under the excitation of a 532-nm laser. Commission Internationale de L'Eclairage analysis demonstrated that colour-tuned luminescence can be obtained by changing doping concentration of Yb3+ and Er3+, which could be applied in the fields of optical telecommunication and optoelectronic devices. The up-conversion luminescent mechanism and the formation mechanism of LaOCl:Yb3+, Er3+ nanobelts were also proposed.  相似文献   

8.
9.
A novel LaMnO3 photocatalyst with perovskite structure was prepared by sol–gel combustion method. The combustion reaction mechanisms of nanocrystalline LaMnO3 powders were investigated by thermal analysis, infrared spectra, and X-ray diffraction technique. The results showed that the gels exhibited self-propagating behavior after ignition in air. Nanocrystalline LaMnO3 powders can be synthesized in one step by using sol–gel combustion synthesis. The photocatalytic activity of the LaMnO3 powders were evaluated by degradation of methyl orange (MO) in water under UV light irradiation. The results showed that the LaMnO3 powders exhibit good photocatalytic activities under UV light irradiation. The degradation percentage after 36 h on LaMnO3 powders was about 76%.  相似文献   

10.
Er3+ and Pr3+ codoped fluorotellurite glasses has been synthesized. The PL spectrum revealed that the intensity of Er3+ characteristic emission was enhanced as Pr3+ concentration increased. Due to small mismatch between the energy level of Er3+: 4F7/2 and Pr3+: 3P0 resonant energy was possibly transferred between them. While Pr3+ concentration kept increasing, both Pr3+ and Er3+ concentration quenching occurred. These glasses with the controllable CIE coordinates might be a potential candidate for the widely application such as solid state multicolor display.  相似文献   

11.
12.
Rare earth-doped hexagonal NaGdF4 nanocrystals were precipitated from a glass. The glass with the mol% composition 70.1SiO2·4.3Al2O3·1.8AlF3·2.3Na2O·18.5NaF·3.0Gd2O3 doped with 8 × 1019 Sm3+ ions per cm3 was already phase separated after casting. The formed droplets enriched in rare earths and fluoride had sizes in the range mainly from 50 to 90 nm. During annealing at temperatures ≥600 °C, multi core particles of hexagonal NaGdF4 were formed inside the amorphous droplet phase. The fluorescence spectra show that Sm3+ is incorporated into the NaGdF4 lattice. This is confirmed by electron dispersive X-ray analyzes performed in a transmission electron microscope.  相似文献   

13.
14.
15.
16.
The interaction of the surface plasmons of gold nanoparticles on silicon nanowires with fluorophores, lanthanide ions (praseodymium ions, Pr3+, neodymium ions Nd3+, holmium ions Ho3+, and erbium ions Er3+) was investigated. In the presence of Au/Si nanomaterials, the fluorescence peaks were significantly enhanced, which resulted in about 2 orders of magnitude enhancement. The photoluminescence studies revealed that the enhanced fluorescence originates from the local field enhancement around Ln3+ ions, caused by the electronic plasmons resonance of the gold nanoparticles. Results showed that this Au/Si nanostructure had larger enhancement factor than that caused by unsupported Au nanoparticles. These results might be explained by the local field overlap originated from the closed and fixed gold nanoparticles on silicon nanowires.  相似文献   

17.
YPO4:Ln3+ (Ln = Eu and Sm) nanotubes were synthesized by a precipitation process in the presence of SDS. The XRD results showed that all samples have a xenotime type tetragonal structure, indicating that doped rare earth ions have no influence on the phase. The SEM and TEM images showed that all samples are nanotubes. On basis of the morphology of samples and the properties of SDS, the possible formation mechanism was speculated. YPO4:Eu3+ and YPO4:Sm3+ nanotubes showed characteristic emission bands of Eu3+ and Sm3+ ions, respectively. For YPO4:Eu3+/Sm3+ nanotubes, the codoping Sm3+ ions can enhance the emission intensity of Eu3+ ions.  相似文献   

18.
19.

Polycrystalline powders of rare-earth doped La1?xGdxB3O6 (0?≤?x?≤?0.2) and La1?xSmxB3O6 (0.0?≤?x?≤?0.1) phosphors were successfully prepared by a B2O3 flux method. All the phosphor samples are well characterized by powder X-ray diffraction (XRD), infrared (IR), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) methods and fluorescence lifetime of Sm3+ ion. The XRD patterns show that La1?xMxB3O6 (M?=?Gd and Sm) adopt monoclinic with the I2/a space group. The SEM–EDS results confirmed the doping of Gd and Sm into LaB3O6 lattice. The IR and Raman spectra of these solid solutions gave distinctive bands corresponding to planar BO3 and tetrahedral BO4 groups. The photoluminescence (PL) spectra of La1?xGdxB3O6 gave a strong emission band, 6PJ?→?8S7/2, at 310 nm. The PL spectra of La1?xSmxB3Ophosphor showed orange-red emission at 598 nm when excited using light of wavelength of 402 nm. The results were obtained by the transition 4G5/2?→?6H7/2 of Sm3+ ions. The influence of dopant concentration on the emission profiles was studied. The ESR spectra of La1?xGdxB3O6 (x?=?0.02) gave a typical U-spectrum and spin-Hamiltonian parameters are deduced.

  相似文献   

20.
Mn2+ and RE3+ (RE = Tb, Eu, Nd) co-doped CdSiO3 orange phosphors were prepared at 1050 °C by a sol–gel method. The phase and crystallinity of the synthesized materials were investigated by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The luminescence characteristics were analyzed using photoluminescence (PL) spectra, afterglow decay curves, long-lasting phosphorescence spectra, and thermoluminescence (TL) spectra. Due to the difference in co-doped rare earth ionic radii, it varied greatly in trap density and trap depth caused by the different defects deriving from RE3+ ions co-doping into the CdSiO3: Mn2+ host. The afterglow intensity and time for these samples increased as follows: CdSiO3: Mn2+0.2%, Nd3+0.8% < CdSiO3: Mn2+0.4%, Tb3+0.8% < CdSiO3: Mn2+0.4%, Eu3+0.3%. CdSiO3: Mn2+0.4%, Eu3+0.3% had the best afterglow properties, which could be due to the proper traps formed by Eu3+ ions co-doping into the host. The role of RE3+ co-doped into the CdSiO3: Mn2+ matrix and the possible long-lasting phosphorescence process was also discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号