首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Biodiesel has become one of the potential alternative sources to replace diesel. Some of the limitations of biodiesel include high NO x , poor atomization, poor oxidation stability, cold-flow problems, long-term storage problems, etc. Various strategies were discussed to overcome the limitations of biodiesels. Recent research is on effects of fuel additives or fuel composition modification to reformulate the fuel properties. This article is aimed at presenting the experimental investigation of the effects of isobutanol additive on the engine performance and emission characteristics of biodiesel blends derived from waste vegetable oils. The experimental investigation was conducted on a direct injection four-stroke diesel engine with different blends, B10, B20, B30, B10 (10% ISB), B20 (10% ISB), B30 (10% ISB), B10 (20% ISB), B20 (20% ISB) and B30 (20% ISB), and engine performance and emission characteristics are evaluated and discussed.  相似文献   

2.
The role of nanoparticles and nanofluid additives for biodiesel has gained consistent position in the current trend as they contribute to increase the performance of the engine with lower emission. In addition, additives also help to increase the engine reliability and lifespan. In this work, the effects of canola biodiesel blends of 20% proportions with diesel were investigated at 100% of engine load. The fuel is tested in a multi-cylinder water-cooled direct ignition (DI) engine. There are numerous notable works on nanofluid; however, the addition of TiO2 nanoparticle as additive to produce canola biodiesel fuel is very limited. With the addition of the TiO2 nanoparticle on Canola biodiesel blend in the DI engine, the exhaust property of gases such as CO, HC and NOX is reduced. Furthermore, the combustion characteristics of the engine are improved. The canola biodiesel blends also resulted in lower NOx emission as well as low smoke.  相似文献   

3.
ABSTRACT

The present investigation explores the effect of dairy scum oil methyl ester (DSOME) blends and ethanol additive on TV1 Kirloskar diesel engine performance, combustion and emission characteristics. From the experimental study, it is concluded that DSOME-B20 (20% dairy scum biodiesel?+?80% diesel) has shown appreciable performance and lower HC and CO emissions among all other blends. Hence DSOME-B20 is optimised as best fuel blend and it is carried for further investigations to study the effect of bio-ethanol additive on diesel engine performance. From the study it apparent that diesel engine operated with ethanol additive and 20% dairy scum biodiesel blended fuels shown the satisfactorily improved emission characteristics when compared to petroleum diesel fuel operation. Finally, from the experimental investigation, it concludes that addition of ethanol shown the slightly higher HC, CO emission and improved BTE, BSFC, NOx and CO2 than sole B20 biodiesel blend. Among all three (3%, 6% and 9%) ethanol additive ratios, E6% (6%-ethanol with B20) ethanol additive exhibits slightly better BTE, BSFC, cylinder pressure and heat release rate hence 6% ethanol additive with B20 biodiesel blend would furnish beneficial effects in the diesel engine.  相似文献   

4.
Vateria indica Linn seeds were found to contain nearly 19% of oil/fat content. This fat is converted into biodiesel by a novel method by the authors at the biodiesel preparation facility at NITK, Surathkal, India. As biodiesel is a promising alternative fuel for petro diesel in compression ignition (CI) engines, this biofuel is tested in a single-cylinder diesel engine. The objective of this work is to find combustion, performance and emission characteristics of a CI engine with diesel and blends of V. indica biodiesel at 180, 200 and 220?bar injection pressures. Blending is done in volumetric ratios of 10%, 15%, 20% and 25% of biodiesel with diesel which are called as B10, B15, B20 and B25. The idea of increasing fuel injection pressure is to promote atomisation and full penetration into the combustion chamber leading to better combustion. Blend B25 showed best thermal efficiency of the order of 33.03% and the least NOX emission of 1047?ppm at 220?bar injection pressure at 75% load.  相似文献   

5.
ABSTRACT

The present study was aimed to produce biodiesel from soybean oil and to investigate its characteristics. Soybean oil-based bio diesel properties are observed and tested in the fuel testing laboratory with standard procedures. It is found that soybean oil-based biodiesel has similar properties as that of diesel fuel. An experimental set-up was used in the study to analyse the performance, combustion and emission of soybean oil biodiesel with respect to normal diesel by using different blends (B20, B40, B60, B80 and B100). It is observed that there is no difficulty found in running the engine, but the performance of the biodiesel blends quite deviated from normal diesel. The combustion characteristics of the tested blends were in agreement with normal diesel. The carbon emissions are much lower for soybean oil biodiesel blends than diesel.  相似文献   

6.
The current state of future energy and environmental crises has revitalised the need to find alternative sources of energy due to escalating oil prices and depleting oil reserves. To meet increasing energy requirements, there has been a growing interest in alternative fuels like biodiesel that can become a suitable diesel fuel substitute for compression ignition engine. Biodiesel offers a very promising alternative to diesel fuel, since they are renewable and have similar properties. Calophyllum inophyllum seed oil collected from different restaurants in the Nagapattinam region of South India was converted into methyl esters (biodiesel) by transesterification. Biodiesel produced from C. inophyllum oil was blended with diesel by different volume proportions (25%, 50%, and 75%). Biodiesel and its blends were tested on a direct injection (DI) diesel engine at a constant speed by varying loads from 0% to 100% in steps of 20% to analyse its performance, emission, and combustion characteristics. The results obtained were compared with that of diesel fuel. B25 (27.5%) showed better performance than diesel fuel (26.28%) at full load and B50 showed performances similar to diesel fuel. Smoke density of B25 was slightly (2.6%) higher than that of diesel at full load conditions. At full load, measured carbon monoxide emissions for B25 and B50 were 4% lower than that of diesel. Hydrocarbon emissions for B25 and B100 were 5.37% and 25.8% higher than that of diesel, respectively. Nitrogen oxides (NOx) emission was lower for all biodiesel blends. NOx emissions of B100 and B75 were lower than that of diesel by 22.16% and 13.29% at full load, respectively. Combustion profile was smoother, and no knocking problem was observed while operating with biodiesel blends. B75 produced peak cylinder pressure.  相似文献   

7.
This study investigates the biodiesel from Deccan hemp oil and its blends for the purpose of fuelling diesel engine. The performance and emission characteristics of Deccan hemp biodiesel are estimated and compared with diesel fuel. The experimental investigations are carried out with different blends of Deccan hemp biodiesel. Results show that brake thermal efficiency is improved significantly by 4.15% with 50 BDH when compared with diesel fuel. The Deccan hemp biodiesel reduces NOx, HC and CO emission along with a marginal increase in CO2 and smoke emissions with an increase in the biodiesel proportion in the diesel fuel. The improvement in heat release rates shows an increase in the combustion rate with different percentage blends of Deccan hemp biodiesel. From the engine test results, it has been established that 30–50 BDH of Deccan hemp biodiesel can be substituted for diesel.  相似文献   

8.
This article is an effort to address the need for a non-cooking oil-based biodiesel. Here, the experimental work is done on a single cylinder, direct injection CI engine using cashew nut shell oil biodiesel blends under constant speed. The cashew nut shell liquid (CNSL) biodiesel is blended with the diesel fuel and used as biodiesel blend. Blends used for testing are B20, B40 and B60. The effect of the fuels on engine power, brake thermal efficiency (BTE) and exhaust gas temperature was determined by performance tests. The influences of blends on CO, CO2, HC and NOx emissions were investigated by emission tests. The BTE values of biodiesel are closer to diesel. Compared to diesel, all the biodiesel blends gave lesser unburnt hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. Slightly higher NOx emissions were found in CNSL biodiesel blends, which is typical of the other biodiesels.  相似文献   

9.
ABSTRACT

Biodiesel is proved to be a better substitute of conventional diesel. Economically good biosource is a needed one. In this study, freshwater algae (micro algae) are used for producing the biodiesel. The fuel properties of the biodiesel sample were tested and found within the limits. The B10 and B20 biodiesel blends with diesel are tested in a single cylinder CI engine. The blends show a better performance in CI engine and the values are closer to the conventional diesel. The important engine parameter compression ratio is also made to vary. At the three compression ratios, the biodiesel’s performance trend is quite comparable with diesel.  相似文献   

10.
An investigational research is carried out to found the performance and emission characteristics of a direct injection (DI) diesel engine with cerium oxide nanoparticles additives in diesel and biodiesel blends. Mahua methyl ester was produced by transesterification and blended with diesel. Cerium oxide nanoparticles of 50 and 100?ppm in proportion are subjected to high-speed mechanical agitation followed by ultra-sonication. The experimentations was conducted on a single cylinder DI diesel engine at a constant speed of 1500?rpm using different cerium-oxide (CeO2)-blended biodiesel fuel (B20?+?50?ppm, B20?+?100?ppm, B50?+?50?ppm and B50?+?100?ppm) and the outcomes were compared with those of neat diesel and Mahua biodiesel blend (B20 and B50). The experimental results indicated that brake thermal efficiency of B20?+?100?ppm cerium oxide was increased by 1.8 with 1% betterment in specific fuel consumption. Emissions of hydrocarbon and carbon monoxide were reasonably lower than Diesel fuel.  相似文献   

11.
ABSTRACT

This work investigates the effect of adding Cerium oxide nanoparticles at different proportions (30, 60 and 90?ppm) to Calophyllum inophyllum methyl ester and diesel blends (20% CI methyl ester and 80% diesel) in a four-stroke single-cylinder diesel engine. Addition of nanoparticles is a strategy to reduce emission and to improve the performance of the biodiesel. Modified fuels are introduced into the engine by admitting exhaust gas recirculation (EGR) at a rate of 10% and 20% so as to reduce nitrogen oxide (NOX) emissions from biodiesel and diesel blends. Results revealed a significant reduction in emissions (CO, NOX, HC and Smoke) at a 10% EGR rate. However, brake thermal efficiency is reduced with an increase in brake-specific fuel consumption at higher EGR rates. Hence, it is observed that 10% EGR rate is an effective method to control the emission of biodiesel and diesel blends without compromising much on engine efficiency.  相似文献   

12.
In the present investigation, the effect of thermal barrier coated piston on the performance and emission characteristics of mahua-biodiesel-fuelled diesel engine was studied and compared with those of neat diesel fuel. The piston, cylinder walls and the valves of the engine were coated with 0.25?mm thickness of Al2O3 material without affecting the compression ratio of the engine. Experiments were conducted using diesel and biodiesel blend (B20) in the engine with and without coating. The results revealed that specific fuel consumption was decreased by 8.5% and the brake thermal efficiency was increased by 6.2% for biodiesel blend with coated engine compared with the base engine with neat diesel fuel. The exhaust emissions CO, NOx and HC emissions were also decreased for biodiesel blend with coated engine compared with base engine.  相似文献   

13.
ABSTRACT

Sustainable development of natural resources in this technological world goes hand in hand with the issues like cleaner environment, plantation of oil providing trees, etc. The overall objective of the national mission is to increase the creation of national infrastructure for production of biodiesel through cultivation of Jatropha plant and processing of its oil. Therefore, the objective of this paper is to provide a clean economical solution to this problem. The use of biodiesel leads to reduction in NOx, HC, CO2 and CO, and increase in fuel consumption on diesel engine. The present diesel engine. The Nano particles were dispersed in the biodiesel. If the additives added in the biodiesel at appropriate proportion, it will helpful to increase the engine combustion and performance characteristics. Nano-additives reduce the fuel consumption and improve the thermal efficiency during combustion additives release the energy to the fuel. The current Investigation is to study the effect of Nano-fuel additives cerium oxide (CeO2) the performance and emission characteristics of Mentha longifolia biodiesel in a single cylinder, four stroke.  相似文献   

14.
Ultra low sulfur diesel and two different kinds of biodiesel fuels blended with baseline diesel fuel in 5% and 20% v/v were tested in a Cummins 4BTA direct injection diesel engine, with a turbocharger and an intercooler. Experiments were conducted under five engine loads at two steady speeds (1500 rpm and 2500 rpm). The study aims at investigating the engine performance, NOx emission, smoke opacity, PM composition, PM size distribution and comparing the impacts of low sulfur content of biodiesel with ULSD on the particulate emission. The results indicate that, compared to base diesel fuel, the increase of biodiesel in blends could cause certain increase in both brake specific fuel consumption and brake thermal efficiency. Compared with baseline diesel fuel, the biodiesel blends bring about more NOx emissions. With the proportion of biodiesel increase in blends, the smoke opacity decreases, while total particle number concentration increases. Meanwhile the ULSD gives lower NOx emissions, smoke opacity and total number concentration than those of baseline diesel fuel. In addition, the percentages of SOF and sulfate in particulates increase with biodiesel in blends, while the dry soot friction decreases obviously. Compared with baseline diesel fuel, the biodiesel blends increase the total nucleation number concentration, while ULSD reduces the total nucleation number concentration effectively, although they all have lower sulfur content. It means that, for ULSD, the lower sulfur content is the dominant factor for suppressing nucleation particles formation, while for biodiesel blends, lower volatile, lower aromatic content and higher oxygen content of biodiesel are key factors for improving the nucleation particles formation. The results demonstrate that the higher NOx emission and total nucleation number concentration are considered as the big obstacles of the application of biodiesel in diesel engine.  相似文献   

15.
In this experiment, the performance, emission, and combustion characteristics of a diesel engine were tested using bio-fuel (Anise oil) at different loads. The main focus of this study was to compare the existing biodiesel blends with the proposed mixture (anise?+?cerium oxide) of biodiesel blends in terms of engine parameters, cost, efficiency, and pollution control. The blends used in this experiment are B10 (Biodiesel-10%), B20 (Biodiesel-20%), and B30 (Biodiesel-30%). The emission and performance parameters considered for the test are SFC (specific fuel consumption), CO (carbon monoxide), NOX (nitrogen oxide), and HC (hydrocarbon). These parameters were tested for different load conditions such as 0%, 25%, 50%, 75%, and 100%. From the results, it shows that SFC is lower for B20 blend compared to that of pure diesel fuel, while B10, B30, B40, and B50 blends have slightly higher values. From the experiment, it is found that emissions of the HC and NOx were reduced and CO emission is slightly higher than the pure diesel.  相似文献   

16.
Energy utilisation from renewable sources plays a vital role in meeting the demands of a clean environment. Commercialisation of biodiesel is comparatively less than that of other alternative sources due to its suitability and yield. This paper is focused on performance and emission characteristics of neem oil biodiesel and cotton seed oil biodiesel blended with cerium oxide as an additive. The blending proportion was B10, B20, B30, B40 and 100% diesel. The testing was performed in a single-cylinder diesel engine coupled with an exhaust gas analyser. The performance characteristics were obtained in between the brake power with specific fuel consumption and emission characteristics such as carbon monoxide, carbon dioxide and other gases. It was observed that the combination of B20 proportion with CeO2 blend produces effect results with other blends in specific fuel consumption and reduced emission behaviour.  相似文献   

17.
The energy consumption is increasing rapidly due to population growth, improved living standards and industrialisation. A significant amount of fossil fuels is consumed by the transportation sector, which causes the fast depletion of fossil fuels and environmental pollution. These problems can be overcome by using Biodiesel. This research work aims to reduce the NOx emission in diesel engines. The literature survey reveals that the use of a fuel additive reduces the emissions by oxygenating the fuel. Among oxygenates, ether proves to behave better than alcohols. Hence, for this present work, two different types of ethers were selected which were not used in earlier occasions. DGME (Diethylene Glycol Monomethyl Ether) and DGMB (Diethylene Glycol Monobutyl Ether) are the two additives selected from the ether group and used as additives with palm oil methyl ester (POME) biodiesel in various proportions and tested in a direct injection compression ignition engine which reduced the emissions. To start with, the engine was run with diesel and subsequently with biodiesel and with the additives. The performance tests were carried out in a single-cylinder, four-stroke, water-cooled engine with and without exhaust gas recirculation (EGR). This engine is coupled with eddy current dynamometer. The use of biodiesel in conventional diesel engines results in substantial reduction in emission of carbon monoxide, particulates and unburned hydrocarbons, but increases NOx emission. This review focuses on reduction of NOx emission. Combustion and performance analysis of the engine have also been evaluated.  相似文献   

18.
The present work deals about the performance, emission and combustion characteristics of a four-cylinder, direct injection, water-cooled, Indica diesel engine fuelled with biodiesel produced through the hydrodynamic cavitation method from an underutilised and potential feedstock Yellow Oleander (Thevetia peruviana) oil. Engine tests were performed with neat diesel and biodiesel blends of 10%, 20% and 30% from Yellow Oleander oil at different engine speeds. Experimental results showed that biodiesel produced through the hydrodynamic cavitation technique with a 1%?w/w catalyst percentage, 6:1?molar ratio and 35?min reaction time was equal to 97.5%. During engine performance tests, biodiesel blends showed higher brake-specific fuel consumption, brake thermal efficiency (for lower blends up to 20%) and exhaust gas temperature than diesel fuel. Engine emissions showed higher nitrogen oxide, but a decreased amount of smoke opacity, carbon monoxide, unburned hydrocarbon and favourable pθ diagram as compared to diesel.  相似文献   

19.
ABSTRACT

Biodiesel as an alternative source of petroleum fuel could reduce the dependence on petroleum products and control pollution problems. These biofuels are derived from various sources and if directly used in the engine it will not completely burn and will cause an increase in the emission level. In this experiment, 20% of rubber seed oil (B20) blended with pure diesel fuel along with aluminium oxide (Al2O3) was used in the proportions of 10?, 20 and 30?ppm. The obtained experimental results showed that the brake thermal efficiency was increased and the engine emission was reduced. And the brake-specific fuel consumption was reduced, but the NOx level increased at the proportion level at 10?ppm of nano additives. This experiment has been carried out in a single cylinder water-cooled engine connected to an electrical dynamometer without engine modification and the injection pressure and timings were maintained at the standard level designed for the engine. The dynamic energy of aluminium oxide blend with the biodiesel improved the combustion characteristics in the engine, and caused a reduction in carbon deposits by 44.8% in the cylinder wall.  相似文献   

20.
ABSTRACT

The energy crisis created by depletion of fossil fuels and the toxic emissions from the fossil fuel demands for eco-friendly potential alternative sources of energy. Even though unclean, biodiesel is found to be a potential alternative for the fossil fuels. In the present work, the emission characteristics and performance of biodiesel blend with and without ZNO additive was studied. There are four biodiesel blends studied in the first part of the research and found that the B25 combination gives a better result compared to others; therefore, this blend is tested with three proportion of ZNO additive in the second part of the research. The addition of 125?PPM of ZNO to the selected B25 blends gives a better performance, the efficiency improvement is found to be 4.2% and the emission of NOx is by 10.3% under full load condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号