首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examines the energy discharge of a phase-changing material (PCM)-based air heat exchanger using a metal foam inside the heat transfer fluid (HTF) channel. Such systems have various potential applications in the heating space and building ecosystem. Thermal energy storage (TES) often utilizes air as the HTF, which limits the heat transfer performance due to the low thermal conductivity. This paper aims to address this drawback via incorporating a metal foam into the HTF channel to enhance the thermal performance between the heat transfer fluid (air) and the PCM, which is considered as the novel side of this study. The combined system is mathematically modeled with an symmetrical, three-dimensional computational fluid dynamics method for various flow rates and inlet temperatures of the HTF with different geometric parameters of the metal foam. This study indicates the advantage of utilizing the porous medium in the air channel. The results show the HTF flow rate has a great influence on the discharging rate. The presence of the porous medium in the system improves the discharging process by 116% compared with a non-porous medium system at the same flow rate. The discharging time decreases by increasing the porosity, and the value of 90% is found as the best porosity value at the flow rate of 0.005 kg/s in this system. The solidification rate is proportional to the pore density because of the surface area impacts of the porous medium, also the pressure-drop and the pumping required are highly affected by the mentioned dependent parameters.  相似文献   

2.
Ming Liu  Frank Bruno  Wasim Saman 《Solar Energy》2011,85(11):3017-3027
This paper presents the results of a thermal performance analysis of a phase change thermal storage unit. The unit consists of several parallel flat slabs of phase change material (PCM) with a liquid heat transfer fluid (HTF) flowing along the passages between the slabs. A validated numerical model developed previously to solve the phase change problem in flat slabs was used. An insight is gained into the melting process by examining the temperatures of the HTF nodes, wall nodes and PCM nodes and the heat transfer rates at four phases during melting. The duration of the melting process is defined based on the level of melting completion. The effects of several parameters on the HTF outlet temperature, heat transfer rate and melting time are evaluated through a parametric study to evaluate the effects of the HTF mass flow rate, HTF inlet temperature, gap between slabs, slab dimensions, PCM initial temperature and thermal conductivity of the container on the thermal performance. The results are used to design a phase change thermal storage unit for a refrigerated truck.  相似文献   

3.
This study focuses on heat transfer enhancement in double pipe energy storage system. Enhancement is achieved by use of metal screens/spheres placed inside the phase change material (PCM), which is paraffin wax and results in increasing the effective thermal conductivity of the combined media of PCM and metal screens/spheres. The experiments are conducted as a function of the diameter and number of spheres inserted in the phase change material. Also, the experiments investigate the effect of increasing the temperature of the heat transfer fluid (HTF). Results are presented in terms of variations in the PCM Nusselt number and the melting Fourier number. Results indicate three-fold decrease in the Fourier number and similar increase in the Nusselt number. Replacing 2-volume percentage of the wax material by the metal spheres results in this large enhancement.  相似文献   

4.
基于高温相变材料,对填充床储热系统中储热单元球体的储热性能进行了模拟研究.研究了不同传热流体温度和球体直径对球体储热性能的影响规律,对导热为主的相变储热过程与导热和自然对流共同作用的相变储热过程进行了比较分析,同时还探讨了高温辐射换热的影响.结果表明,相变时间随球体直径的增大而增大,随传热流体温度的增大而减小.当考虑相变区域自然对流时,总的相变时间显著减少,和单纯导热相比,完全相变时间缩短了近16%.在导热和自然对流的基础上加上辐射传热后可以看出,辐射换热强化了球体内的传热过程,加快了相变材料的熔化速度,强化了自然对流的作用.  相似文献   

5.
Numerical modeling was performed to simulate the melting process of a fixed volume/mass phase-change material (PCM) in different shell-and-tube type latent thermal energy storage units with identical heat transfer area. The effect of liquid PCM natural convection (NC) on the latent heat storage performance of the pipe and cylinder models was investigated using a 3D numerical model with FLUENT software. Result shows that NC can cause a non-uniform distribution of the solid–liquid interface, which accelerates PCM melting rate. The PCM melting rate and heat storage rate in the horizontal cylinder model are higher than those in the horizontal pipe model because of the combined effects of heat conduction and NC. A comparative study was conducted to determine the effects of horizontal and vertical shell-and-tube models with different heat transfer fluid (HTF) inlets including the effects of NC. The results indicate that the vertical model with an HTF inlet at the bottom exhibits the highest PCM melting rate and heat storage rate for the pipe models. For the cylinder models, the horizontal model and the vertical model with an HTF inlet at the bottom can achieve nearly the same completed melting time. In addition, NC has minimal effect on any model with an HTF inlet at the top.  相似文献   

6.
An experimental analysis is presented to establish the thermal performance of a latent heat thermal storage (LHTS) unit. Paraffin is used as the phase change material (PCM) on the shell side of the shell and tube‐type LHTS unit while water is used as the heat transfer fluid (HTF) flowing through the inner tube. The fluid inlet temperature and the mass flow rate of HTF are varied and the temperature distribution of paraffin in the shell side is measured along the radial and axial direction during melting and solidification process. The total melting time is established for different mass flow rates and fluid inlet temperature of HTF. The motion of the solid–liquid interface of the PCM with time along axial and radial direction of the test unit is critically evaluated. The experimental results indicate that the melting front moves from top to bottom along the axial direction while the solidification front moves only in the radial direction. The total melting time of PCM increases as the mass flow rate and inlet temperature of HTF decreases. A correlation is proposed for the dimensionless melting time in terms of Reynolds number and Stefan number of HTF. © 2013 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.21120  相似文献   

7.
A computational model for the prediction of the thermal behaviour of a compact multi-layer latent heat storage unit is presented. The model is based on the conservation equations of energy for the phase change material (PCM) and the heat transfer fluid (HTF). Electrical heat sources embedded inside the PCM are used for heat storage (melting) while the flow of an HTF is employed for heat recovery (solidification). Parametric studies are performed to assess the effect of various design parameters and operating conditions on the thermal behaviour of the unit. Results indicate that the average output heat load during the recovery period is strongly dependent on the minimum operating temperature, on the thermal diffusivity of the liquid phase, on the thickness of the PCM layer and on the HTF inlet mass flowrate and temperature. It is, on the other hand, nearly independent of the wall thermal diffusivity and thickness and of the maximum operating temperature. Correlations are proposed for the total energy stored and the output heat load as a function of the design parameters and the operating conditions. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract

In this study, experiments are conducted to investigate charging and discharging characteristics of a paraffin as a phase change material (PCM). A vertical tube-in-shell geometry is designed to store the PCM. The thermophysical properties of the paraffin examined are determined through the differential scanning calorimeter (DSC) analysis. A series of experiments are carried out to investigate the effect of increasing the inlet temperature and the mass flow rate of the heat transfer fluid (HTF) both on the charging and discharging processes (i.e., melting and solidification) of the PCM.  相似文献   

9.
The objective of this paper is to study the thermal performance of latent cool thermal energy storage system using packed bed containing spherical capsules filled with phase change material during charging and discharging process. According to the energy balance of the phase change material (PCM) and heat transfer fluid (HTF), a mathematical model of packed bed is conducted. n-tetradecane is taken as PCM and aqueous ethylene glycol solution of 40% volumetric concentration is considered as HTF. The temperatures of the PCM and HTF, solid and melt fraction and cool stored and released rate with time are simulated. The effects of the inlet temperature and flow rate of HTF, porosity of packed bed and diameter of capsules on the melting time, solidification time, cool stored and released rate during charging and discharging process are also discussed.  相似文献   

10.
The thermal and heat transfer characteristics of lauric acid during the melting and solidification processes were determined experimentally in a vertical double pipe energy storage system. In this study, three important subjects were addressed. The first one is temperature distributions and temporal temperature variations in the radial and axial distances in the phase change material (PCM) during phase change processes. The second one is the thermal characteristics of the lauric acid, which include total melting and total solidification times, the nature of heat transfer in melted and solidified PCM and the effect of Reynolds and Stefan numbers as inlet heat transfer fluid (HTF) conditions on the phase transition parameters. The final one is to calculate the heat transfer coefficient and the heat flow rate and also discuss the role of Reynolds and Stefan numbers on the heat transfer parameters. The experimental results proved that the PCM melts and solidifies congruently, and the melting and solidification front moved from the outer wall of the HTF pipe (HTFP) to the inner wall of the PCM container in radial distances as the melting front moved from the top to the bottom of the PCM container in axial distances. However, it was difficult to establish the solidification proceeding at the axial distances in the PCM. Though natural convection in the liquid phase played a dominant role during the melting process due to buoyancy effects, the solidification process was controlled by conduction heat transfer, and it was slowed by the conduction thermal resistance through the solidified layer. The results also indicated that the average heat transfer coefficient and the heat flow rate were affected by varying the Reynolds and Stefan numbers more during the melting process than during the solidification process due to the natural convection effect during the melting process.  相似文献   

11.
In this study, an analytical model for a class of heat storage that utilizes latent heat of a phase-change material (PCM) is developed. Two basic shell-and-tube configurations are considered, one in which the PCM melts inside the tubes while the heat transfer fluid (HTF) flows in the shell along it, and the other in which HTF flows inside the tubes while PCM melts outside. A system of partial differential equations, which describes heat transfer and melting of the PCM and heat transfer in the HTF, is derived with some simplifying assumptions, while still capturing and preserving the essential features of the processes involved. These equations are solved analytically, yielding the overall heat exchange parameters, like instantaneous heat transfer rate, stored energy, and overall operation time of the system. The present work shows that the use of the proposed analytical technique and its modifications for the practical PCM arrangements is beneficial. Proper application of the model makes it possible to obtain the parameters of a real PCM melting process in the form of algebraic formulas, both for the transient values of variables over time, and for the overall process characteristics. A comparison with the results of numerical calculations of transient melting, made using computational fluid dynamics, confirms the validity of analytical findings and allows to assess the degree of accuracy of the results of our analytical method in various practical cases.  相似文献   

12.
This paper presents a detailed review of effect of phase change material (PCM) encapsulation on the performance of a thermal energy storage system (TESS). The key encapsulation parameters, namely, encapsulation size, shell thickness, shell material and encapsulation geometry have been investigated thoroughly. It was observed that the core-to-coating ratio plays an important role in deciding the thermal and structural stability of the encapsulated PCM. An increased core-to-coating ratio results in a weak encapsulation, whereas, the amount of PCM and hence the heat storage capacity decreases with a decreased core-to-coating ratio. Thermal conductivity of shell material found to have a significant influence on the heat exchange between the PCM and heat transfer fluid (HTF). This paper also reviews the solidification and melting characteristics of the PCM and the effect of various encapsulation parameters on the phase change behavior. It was observed that a higher thermal conductivity of shell material, a lower shell size and high temperature of HTF results in rapid melting of the encapsulated PCM. Conduction and natural convection found to be dominant during solidification and melt processes, respectively. A significant enhancement in heat transfer was observed with microencapsulated phase change slurry (MPCS) due to direct surface contact between the encapsulated PCM and the HTF. It was reported that the pressure drop and viscosity increases substantially with increase in volumetric concentration of the microcapsules.  相似文献   

13.
Micro‐phase change materials (micro‐PCMs) are proposed to increase the thermal conductivity and the thermal energy storage capacity of a heat transfer fluid (HTF). In this work, we have selected dimethyl terephthalate (DMT) to be used as a PCM for performance enhancement of a synthetic oil in the temperature range of approximately 100 to 170 °C. Silicon dioxide (SiO2) was used as the microencapsulant, because of its desirable properties as containment material, including thermal stability. The SiO2‐coated DMT micro‐PCM was characterized to determine relevant properties and its suitability for HTF performance enhancement. The SiO2‐coated DMT was found to completely disperse in the synthetic oil, Therminol SP, silicone oil, at and above 100 °C. FTIR, thermal diffusivity and differential scanning calorimetry measurements were carried out on the materials, and these tests demonstrated that the coated particles can be used for HTF enhancement in the temperature range of 100–170 °C and potentially higher temperatures if pressurized pipes/vessels are utilized. Using the measured thermal diffusivity and known data for density and specific heat capacity, the thermal conductivity of the micro‐PCM was calculated. Our calculations indicate that both the thermal conductivity and the thermal energy storage heat capacity of the HTF would be enhanced by the addition of this micro‐PCM. It is expected that the thermal conductivity increase will enhance the heat transfer of the fluid when in use at temperatures above and below the melting temperature of the PCM. At the melting point, the latent heat of the PCM will increase the thermal energy storage capacity of the fluid. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
C.Y. Zhao  W. Lu  Y. Tian 《Solar Energy》2010,84(8):1402-1412
In this paper the experimental investigation on the solid/liquid phase change (melting and solidification) processes have been carried out. Paraffin wax RT58 is used as phase change material (PCM), in which metal foams are embedded to enhance the heat transfer. During the melting process, the test samples are electrically heated on the bottom surface with a constant heat flux. The PCM with metal foams has been heated from the solid state to the pure liquid phase. The temperature differences between the heated wall and PCM have been analysed to examine the effects of heat flux and metal foam structure (pore size and relative density). Compared to the results of the pure PCM sample, the effect of metal foam on solid/liquid phase change heat transfer is very significant, particularly at the solid zone of PCMs. When the PCM starts melting, natural convection can improve the heat transfer performance, thereby reducing the temperature difference between the wall and PCM. The addition of metal foam can increase the overall heat transfer rate by 3-10 times (depending on the metal foam structures and materials) during the melting process (two-phase zone) and the pure liquid zone. The tests for investigating the solidification process under different cooling conditions (e.g. natural convection and forced convection) have been carried out. The results show that the use of metal foams can make the sample solidified much faster than pure PCM samples, evidenced by the solidification time being reduced by more than half. In addition, a two-dimensional numerical analysis has been carried out for heat transfer enhancement in PCMs by using metal foams, and the prediction results agree reasonably well with the experimental data.  相似文献   

15.
A latent heat thermal energy storage system using a phase change material (PCM) is an efficient way of storing or releasing a large amount of heat during melting or solidification. It has been determined that the shell‐and‐tube type heat exchanger is the most promising device as a latent heat system that requires high efficiency for a minimum volume. In this type of heat exchanger, the PCM fills the annular shell space around the finned tube while the heat transfer fluid flows within the tube. One of the methods used for increasing the rate of energy storage is to increase the heat transfer surface area by employing finned surfaces. In this study, energy storage by phase change around a radially finned tube is investigated numerically and experimentally. The solution of the system consists of the solving governing equations for the heat transfer fluid (HTF), pipe wall and phase change material. Numerical simulations are performed to investigate the effect of several fin parameters (fin spacing and fin diameter) and flow parameter (Re number and inlet temperature of HTF) and compare with experimental results. The effect of each variable on energy storage and amount of solidification are presented graphically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Thermal performance characteristics of a eutectic mixture of lauric and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipe-energy storage system. This study deals with three important subjects: The first one is to determine the eutectic composition ratio of the lauric acid (LA) and stearic acid (SA) binary system, and to measure its thermophysical properties by DSC. The second one is to establish the thermal characteristics of the mixture such as total melting and solidification times, the heat transfer modes in melted and solidified PCM, and the effect of Reynolds and Stefan numbers as inlet heat transfer fluid (HTF) conditions on the phase transition behaviors. The final one includes the calculations of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, and heat fractions during the melting and solidification processes of the mixture, and also the discussion of the effect of inlet HTF parameters on these characteristics. The LA–SA binary system in the mixture ratio of 75.5:24.5 wt % forms a eutectic, which melts at 37°C and has a latent heat of 182.7 J g−1, and, thus, these properties make it an attractive phase change material used for passive solar space heating applications such as building and greenhouse heating with respect to the climate conditions. The experimental results indicated that the mixture encapsulated in the annulus of two concentric pipes has good thermal and heat transfer characteristics during the melting and solidification processes, and it has potential for heat storage in passive solar space heating systems.  相似文献   

17.
A numerical and experimental investigation of phase change process dominated by heat conduction in a thermal storage unit is presented in this paper. The thermal energy storage involves a shell and tube arrangement where paraffin wax as phase change material (PCM) is filled in the shell. Water as heat transfer fluid (HTF) is passed inside the tube for both charging and discharging cycles. According to the conservation of energy, a simple numerical method called alternative iteration between thermal resistance and temperature has been developed for the analysis of heat transfer between the PCM and HTF during charging and discharging cycles. Experimental arrangement has been designed and built to examine the physical validity of the numerical results. Comparison between the numerical predictions and the experimental data shows a good agreement. A detailed parametric study is also carried out for various flow parameters and system dimensions such as different mass flow rates, inlet temperatures of HTF, tube thicknesses and radii. Numerical study reveals that the contribution of the inlet temperature of HTF has much influence than mass flow rate in terms of storage operating time and HTF outlet temperature. Tube radius is a more important parameter than thickness for better heat transfer between HTF and PCM.  相似文献   

18.
A computational fluid dynamic (CFD) model for tubes in a phase change thermal energy storage system has been developed and validated with experimental results. The heat transfer fluid (HTF) flows in tubes which are configured in a unique arrangement during the charging and discharging processes. Water was used as the phase change material (PCM) which was contained in a cylindrical tank with four tubes coiled inside it. Experiments were conducted for both freezing and melting processes. A three-dimensional CFD model using Ansys code was developed and validated with experimental results. This model endeavoured to describe both the freezing and melting processes of the PCM. The inlet and outlet HTF temperatures as well as nine temperature locations in the PCM were compared with the CFD results. The average effectiveness as well as the duration of the phase change process of each experimental point was also compared with results from the CFD. From this study, it was concluded that the CFD model developed can accurately predict the behaviour of the thermal storage system during charging and discharging. The paper gives details of the CFD model and compares results from the model and experiments.  相似文献   

19.
The present paper describes the analysis of the melting process in a single vertical shell‐and‐tube latent heat thermal energy storage (LHTES), unit and it is directed at understanding the thermal performance of the system. The study is realized using a computational fluid‐dynamic (CFD) model that takes into account of the phase‐change phenomenon by means of the enthalpy method. Fluid flow is fully resolved in the liquid phase‐change material (PCM) in order to elucidate the role of natural convection. The unsteady evolution of the melting front and the velocity and temperature fields is detailed. Temperature profiles are analyzed and compared with experimental data available in the literature. Other relevant quantities are also monitored, including energy stored and heat flux exchanged between PCM and HTF. The results demonstrate that natural convection within PCM and inlet HTF temperature significantly affects the phase‐change process. Thermal enhancement through the dispersion of highly conductive nanoparticles in the base PCM is considered in the second part of the paper. Thermal behavior of the LHTES unit charged with nano‐enhanced PCM is numerically analyzed and compared with the original system configuration. Due to increase of thermal conductivity, augmented thermal performance is observed: melting time is reduced of 15% when nano‐enhanced PCM with particle volume fraction of 4% is adopted. Similar improvements of the heat transfer rate are also detected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
由于相变换热储能技术可以协调能量在时间和空间尺度的分配,成为了目前研究的热点问题。本工作用焓值法分别对充填低温无机盐相变材料的二维和三维管壳式相变储能换热器模型的储/放热特性进行了模拟研究,采用Boussinesq近似研究了液相区密度变化引起的自然对流的影响。研究表明换热器的入口温度对相变换热效率影响显著;在储热过程中自然对流发挥了重要作用,换热效率与液相区的运动状态直接相关,而放热过程中的热交换主要依靠热传导完成;三维模拟的结果表明换热管出口温度与管壁的平均努赛尔数高度相关,且换热管水平放置的换热效率略低于竖直放置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号