共查询到20条相似文献,搜索用时 23 毫秒
1.
We have examined the mechanisms underlying Abeta-evoked c-fos expression in the dorsal horn and gracile nucleus following either sciatic nerve section or crush injury. The results indicate that in the spinal cord Abeta-evoked c-fos does not depend on primary afferent sprouting but is associated with the disconnection from the peripheral target since its expression in the dorsal horn reverts to normal after crush injury when regeneration occurs but persists after cut and ligation where regeneration is prevented. In contrast, however, Abeta-evoked c-fos expression in the gracile nucleus may be under some other control since its expression appears independent of peripheral nerve regeneration. 相似文献
2.
In this paper, the progress of morphological research on the PBN, the cytoarchitecture of the PBN, and the fiber connections between the PBN and the spinal, the brainstem, the forebrain and the other nucleus were summarized. Its function in the relationship between the meridian and the internal organ was also assumed. 相似文献
3.
In the first of a series of studies aimed at mapping brain stem pathological changes in patients with Alzheimer's disease (AD), we report a new finding regarding the parabrachial nucleus (PBN), a unit of paramount importance in the relay and integration of visceral and nociceptive information as well as in homeostatic control. The brains of 20 patients with AD were surveyed. The PBN contained pervasive neuropathological changes in 100% of the brains from those with early-onset dementia and in 80% from those with late-onset dementia. These changes were entirely absent in all 10 normal controls. The pathological changes of PBN, would cause autonomic dysfunction in patients with AD and perhaps contribute to the disproportionate mortality encountered in these patients. 相似文献
4.
L Constandil VH Parraguez F Torrealba G Valenzuela M Serón-Ferré 《Canadian Metallurgical Quarterly》1995,7(3):411-413
The suprachiasmatic nucleus (SCN) is a circadian oscillator in mammals and shows day-night changes in metabolic activity. To investigate whether the fetal sheep SCN behaves as a circadian oscillator, day-night changes in c-fos expression, a marker of neuronal activity, were measured. Eight fetal sheep were sacrificed at 135 days gestation--four at day-time (1200 hours) and four at night-time (2400 hours). Fetal brains were fixed, removed and cut in 40-microns serial coronal sections. Alternate sections were incubated with anti-Fos antibody (1:500) and Fos expression was revealed with extra-avidin-peroxidase and 3,3'-diaminobenzidine or stained with cresyl violet. The number of Fos-immunoreactive (Fos-ir) neurons per mm2 in the rostral, intermediate and caudal regions of the fetal sheep SCN was counted. Fetuses sacrificed in the day-time showed a higher number of Fos-ir neurons per mm2 (mean +/- s.e.; 516.7 +/- 60.1) in the three regions of the SCN than fetuses sacrificed at night-time (140.5 +/- 21.8). In addition, at night-time Fos-ir neurons were mainly localized to the ventrolateral area of the SCN. These findings demonstrate day-night changes in molecular activity consistent with the presence of a circadian oscillator in the fetal sheep SCN. 相似文献
5.
Synthetic sulfated bis-lactobionic acid amides are important heparin-like pharmaceuticals. The synthesis of these compounds yields molecules differing in the number of sulfate groups, and, during the isolation procedure, the required species may partially decompose or take in some impurities. This article shows that capillary zone electrophoresis may serve well as an expedient method for the analysis of the above-mentioned pharmaceuticals. Complex-forming equilibria between the analytes and bivalent cations present in the background electrolyte bring selectivity necessary for the separation, and the detection at various wavelengths serves as an aid in the characterization of admixtures, decomposition products, and impurities. Capillary isotachophoresis may also be used for the analysis of these species, bringing about the potential of micropreparation of individual compounds and opening the chance for continuous free-flow electrophoresis. 相似文献
6.
TM Saleh 《Canadian Metallurgical Quarterly》1997,778(1):56-63
OBJECTIVE: Although there is evidence from postmortem studies suggestive of deficient inhibitory neurotransmission of gamma-aminobutyric acid (GABA) in schizophrenia, no direct in vivo evidence has been obtained to date. The authors used single photon emission computed tomography (SPECT) with iodine-123-labeled iomazenil ([123I]iomazenil), a radioligand that selectively binds with high affinity to the benzodiazepine subunit of the GABAA receptor complex in the human brain, to investigate the presence of benzodiazepine receptor abnormalities in the cerebral cortex of living subjects with schizophrenia. METHOD: Dynamic [123I]iomazenil SPECT was performed in 15 patients (14 patients with DSM-III-R schizophrenia and one with schizophreniform disorder) and 12 healthy subjects over a period of 2 hours. The time-integral method was used to generate ratios of "specific" to "nonspecific" [123I]iomazenil binding at equilibrium for several cortical regions. RESULTS: No overall between-group differences in benzodiazepine receptor binding were found, but significant correlations emerged between the severity of schizophrenic symptoms and [123I]iomazenil binding in limbic cortical regions: positive symptom scores were negatively correlated with benzodiazepine receptor binding in the left medial temporal region, and negative symptoms were inversely related to receptor binding in the medial frontal region. These correlations were not significant when a Bonferroni correction for multiple comparisons was applied. CONCLUSIONS: These preliminary results are consistent with previous research implicating limbic cortical regions in the pathophysiology of schizophrenia, suggesting that reduced inhibitory GABAergic tone in these areas may contribute to the appearance of schizophrenic symptoms. 相似文献
7.
Grigson Patricia Sue; Reilly Steve; Scalera Giuseppe; Norgren Ralph 《Canadian Metallurgical Quarterly》1998,112(5):1104
Rats with bilateral ibotenic acid lesions of the gustatory zone of the parabrachial nuclei (PBN) failed to acquire a conditioned taste aversion (CTA) in Exp 1. They also failed to acquire a conditioned odor aversion (COA) when the olfactory cue was presented on an odor disk in Exp 2 or when it was presented in water in Exp 3. The failure to acquire the COA was not due to an inability to detect or use olfactory stimuli because the lesioned rats displayed neophobia to a novel odor in Exp 3 and used an olfactory cue to predict the availability of an aversive capsaicin solution in Exp 4. Together, the results demonstrate that, as with CTA learning, PBN cell bodies are essential for the establishment of a specific association between an olfactory conditioned stimulus and a lithium chloride unconditioned stimulus. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
8.
c-Fos has been used as a marker for activity in the spinal cord following noxious somatic or visceral stimulation. Although the viscera receive dual afferent innervation, distention of hollow organs (i.e. esophagus, stomach, descending colon and rectum) induces significantly more c-Fos in second order neurons in the nucleus of the solitary tract and lumbosacral spinal cord, which receive parasympathetic afferent input (vagus, pelvic nerves), than the thoracolumbar spinal cord, which receives sympathetic afferent input (splanchnic nerves). The purpose of this study was to determine the contribution of sympathetic and parasympathetic afferent input to c-Fos expression in the nucleus of the solitary tract and spinal cord, and the influence of supraspinal pathways on Fos induction in the thoracolumbar spinal cord. Noxious gastric distention to 80 mmHg (gastric distension/80) was produced by repetitive inflation of a chronically implanted gastric balloon. Gastric distension/80 induced c-Fos throughout the nucleus of the solitary tract, with the densest labeling observed within 300 microns of the rostral pole of the area postrema. This area was analysed quantitatively following several manipulations. Gastric distension/80 induced a mean of 724 c-Fos-immunoreactive nuclei per section. Following subdiaphragmatic vagotomy plus distention (vagotomy/80), the induction of c-Fos-immunoreactive nuclei was reduced to 293 per section, while spinal transection at T2 plus distention (spinal transection/80) induced a mean of 581 nuclei per nucleus of the solitary tract section. Gastric distension/80 and vagotomy/80 induced minimal c-Fos in the T8-T10 spinal cord (50 nuclei/section), but spinal transection/80 induced 200 nuclei per section. Repetitive bolus injections of norepinephrine produced transient pressor responses mimicking the pressor response produced by gastric distension/80. This manipulation induced minimal c-Fos in the nucleus of the solitary tract and none in the spinal cord. It is concluded that noxious visceral input via parasympathetic vagal afferents, and to a lesser extent sympathetic afferents and the spinosolitary tract, contribute to gastric distention-induced c-Fos in the nucleus of the solitary tract. The induction of c-Fos in the nucleus of the solitary tract is significantly greater than in the viscerotopic segments of the spinal cord, which is partially under tonic descending inhibition, but is not subject to modulation by vagal gastric afferents. Distention pressures produced by noxious gastric distention are much greater than those produced during feeding, suggesting that c-Fos induction in the nucleus of the solitary tract to noxious distention is not associated with physiological mechanisms of feeding and satiety. The large vagal nerve-mediated induction of c-Fos in the nucleus of the solitary tract following gastric distension suggests that parasympathetic afferents contribute to the processing of noxious visceral stimuli, perhaps by contributing to the affective-emotional component of visceral pain. 相似文献
9.
10.
Acute exposure to cold-restraint induces vagal-dependent gastric erosions associated with activation of neurons in the dorsal motor nucleus of the vagus (DMN) in rats. The influence of intracerebroventricular (i.c.v.) injection of corticotropin-releasing factor (CRF) (10 micrograms) on c-fos expression in the brain and gastric erosions induced by 3 h cold-restraint was investigated in conscious rats. In cold-restraint exposed rats, CRF injected i.c.v. inhibited gastric erosions and the number of Fos positive neurons in the DMN by 93 and 72%, respectively, while Fos labelling in the nucleus tractus solitarius (NTS) was increased by 5-fold compared with vehicle group. c-fos expression was also induced in the central amygdala by i.c.v. CRF, unlike the vehicle-injected group exposed to cold-restraint. c-fos expression induced by cold-restraint in the raphe pallidus (Rpa) and paraventricular nucleus of the hypothalamus was not altered by i.c.v. CRF. These data indicate that central CRF-induced gastric protection results from the inhibition of DMN neuronal activity enhanced by cold-restraint. CRF action on DMN neurons may be related to the increase in the NTS and central amygdala inputs leading to inhibition of DMN neurons rather than to the decrease in the excitatory input from the caudal raphe projections to the DMN. 相似文献
11.
DR Gehlert DT Stephenson DA Schober K Rash JA Clemens 《Canadian Metallurgical Quarterly》1997,31(5):705-713
Peripheral benzodiazepine receptors (PBRs) are expressed in a variety of tissues but are normally found at low levels in the brain. Following various types of nerve injury, a reactive gliosis results that exhibits a high expression of this receptor. To further characterize the expression of PBRs following neuronal injury, we evaluated PBR expression in the facial nucleus following facial nerve axotomy (FNA). Injury to a peripheral nerve results in a complex series of metabolic and morphological changes around the injured neuron. Transections of the facial nerve results in a rapid activation of both astrocytes and microglia around axotomized motor neurons. FNA resulted in an increase in the staining for both astrocytes (glial fibrillary acidic protein) and activated microglia (OX42). There was also a reduction in synaptic contacts with the motor nucleus as evidenced by reduced staining for the synaptic marker, synaptophysin. In sections labeled with [3H]-PK11195, the subsequent autoradiograms displayed marked increases in the labeling for PBRs. This increase was observed at 5, 7 and 10 days after nerve transection. The increase was primarily in the level of expression (Bmax), with no change in the affinity of the ligand (Kd). The increase in PBR expression after FNA supports the hypothesis that PBRs can be used as a sensitive marker for CNS injury. 相似文献
12.
Exposure to hypercapnia and electrical stimulation of the carotid sinus nerve (CSN) has been shown to induce c-fos expression in several brain stem regions including the nucleus tractus solitarius (NTS). To test whether the labeled neurons were activated directly by hypercapnia or secondarily via the carotid bodies (sinus nerve), adult rats were exposed to either air or 14-16% CO2 for 1 h. Experiments were done on eight groups: (1) exposure to air, (2) exposure to CO2, (3) chronic CSN denervation/CO2, (4) chronic unilateral CSN denervation/CO2, (5) chronic sham CSN denervation/CO2, (6) anesthetized/CO2, (7) anesthetized and acute vagotomy/CO2, and (8) premedicated with morphine, 10 mg s.c., 20 min before exposure to CO2. After exposure to CO2 or air the rats were anesthetized, perfused with 4% paraformaldehyde and the brains processed for immunohistochemical staining for c-fos protein using the PAP (i.e. peroxidase anti-peroxidase) technique. Labeled neurons in the area of the NTS in every second 50- "mu"m section were counted and their position plotted using a microscope and camera lucida attachment. Rats exposed to CO2 had a significantly greater number of labeled neurons in the NTS than those exposed to air. Other interventions, such as CSN denervation, surgery, anesthesia, vagotomy or injection of morphine did not significantly affect the level of c-fos expression in rats exposed to hypercapnia, indicative of central stimulation rather than secondary peripheral input. These responsive neurons may be part of a widespread central chemoreceptive complex. 相似文献
13.
A single microinjection of the cholinergic agonist carbachol into the feline caudolateral parabrachial nucleus produces an immediate increase in state-independent ipsilateral ponto-geniculooccipital waves, followed by a long-term rapid eye movement sleep enhancement lasting 7-10 days. Using retrogradely-transported fluorescent carbachol-conjugated nanospheres and choline acetyltransferase immunohistochemistry, afferent projections to this injection site for long-term rapid eye movement sleep enhancement were mapped and quantified. Six regions in the brain stem contained retrogradely-labelled cells: the raphe nuclei, locus coeruleus, laterodorsal tegmental nucleus, pedunculopontine tegmental nucleus, parabrachial nucleus, and the pontine reticular formation. The retrogradely-labelled (rhodamine+) cells in the pontine reticular formation and pedunculopontine tegmental nucleus contributed the predominant input to the parabrachial nucleus injection site (34.3 +/- 5.3% and 28.4 +/- 5.6%, respectively), compared to the laterodorsal tegmental nucleus (5.8 +/- 3.8%), parabrachial nucleus (13.5 +/- 3.1%), raphe nuclei (12.9 +/- 2.7%), and locus coeruleus (5.1 +/- 2.4%). By comparison with findings of afferent input to the induction site for short-latency rapid eye movement sleep in the anterodorsal pontine reticular formation, the parabrachial nucleus injection site is characterized by a similar proportion of afferents, except that the raphe nuclei were found to provide more than a two-fold greater input. Retrogradely-labelled neurons quantified in these nuclear regions consisted of 21.5% double-labelled (rhodamine+/choline acetyltransferase+) cholinergic and 78.5% noncholinergic (rhodamine+/choline acetyltransferase-) cells. The pedunculopontine tegmental nucleus contributed the predominant (51.7 +/- 8.2%) cholinergic input, compared to laterodorsal tegmental nucleus (20.7 +/- 10.2%), parabrachial nucleus (23.1 +/- 7.5%), and pontine reticular formation (4.4 +/- 2.1%). A comparative analysis of the total retrogradely-labelled cells within each nuclear region which were also double-labelled showed the highest proportion in the laterodorsal tegmental nucleus (76.2 +/- 7.5%) compared to pedunculopontine tegmental nucleus (39.4 +/- 3.6%), parabrachial nucleus (37.3 +/- 2.8%), and pontine reticular formation (3.2 +/- 2.1%). These data indicate that while pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus neurons exert a powerful cholinergic influence on the injection site for long-term rapid eye movement enhancement, a major component of the afferent circuitry is non-cholinergic. Since the non-cholinergic input includes contributions from the locus coeruleus and raphe nuclei, it is probable that the caudolateral parabrachial nucleus contains cholinergic and aminergic afferent systems that participate in the long-term enhancement of rapid eye movement sleep. 相似文献
14.
The distribution of vasopressin and oxytocin immunoreactive fibers was examined in the pontine parabrachial nucleus of the human brain using purified polyclonal antibodies. The results revealed a striking predominance of vasopressin in this brain region. No obvious density difference, either in vasopressin or in oxytocin innervation, was found between Alzheimer's disease patients and matched controls. The present study corroborates other reports that suggest that in Alzheimer's disease the vasopressin innervation in the caudal part of the human brain is not affected. 相似文献
15.
Grigson Patricia S.; Shimura Tsuyoshi; Norgren Ralph 《Canadian Metallurgical Quarterly》1997,111(1):180
Bilateral electrolytic lesions of the nucleus of the solitary tract (NST) or ibotenic acid lesions of the pontine parabrachial nuclei (PBN) failed to disrupt retention of a preoperatively acquired conditioned taste aversion (CTA) to 0.3 M alanine. For both sham- and NST-lesioned rats, the CTA persisted following 3 nonreinforced conditioned stimulus (CS) presentations. For PBN-lesioned rats, retention was more labile. The preoperatively acquired CTA was extinguished by the 3rd nonreinforced CS exposure. When assessed postoperatively using a novel CS, NST-lesioned rats acquired a new CTA, although they were rendered anosmic with zinc sulfate (P. S. Grigson et al, see record 199707487-016). Rats with PBN lesions, however, failed to acquire a 2nd CTA postoperatively. Thus, the PBN is essential for the acquisition of a CTA, but neither of the brainstem gustatory nuclei need be intact for the retention of a preoperatively acquired CTA. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
16.
Insulin can act within the brain to stimulate ovine luteinizing hormone (LH) secretion, but insulin-induced hypoglycaemia inhibits LH via unknown brain sites, possibly involving corticotrophin-releasing factor (CRF). Castrate male sheep, with (E+) or without (E-) subcutaneous oestradiol implants, were blood sampled every 12 min for 8 h. Insulin (0.25 or 0.5 IU/kg) was injected at 4 h via the carotid artery or jugular vein. All treatments reduced LH output with no differences between dose rate nor route of administration, but sensitivity was greater in E+ than E-sheep. There was no evidence for an effect of insulin on LH 0-1 h postinjection; however, 1-3 h after insulin, when hypoglycaemia was established, LH pulses were inhibited in both E+ and E- sheep (P<0.001). Additional intravenous (i.v.) glucose injections given 1 h (20 mmol) and 2 h (10 mmol) after insulin (0.5 IU/kg) were each followed by an LH pulse within 30 min (75% response in both E+ and E-sheep). In a separate experiment, sheep were killed 2 h after i.v. insulin (0.5 IU/kg) or saline. In-situ hybridization revealed c-fos mRNA in the paraventricular nucleus (PVN), but not in any other hypothalamic nuclei nor in the hindbrain; and this was linked with increased CRF gene expression in the PVN. Similar c-fos and CRF gene expression was seen in insulin-treated sheep given additional i.v. glucose (20 and 10 mmol, respectively, 40 and 20 min ante mortem), but not in saline-treated controls. Therefore, insulin-induced hypoglycaemia inhibited LH secretion, with oestradiol potentiating the effect, and was associated with gonadal steroid-independent c-fos gene expression and increased CRF gene expression in the PVN. The ovine PVN may be involved in mediating insulin-induced hypoglycaemic inhibition of LH by a mechanism which might involve CRF. 相似文献
17.
SB Kombian TM Saleh NI Fiagbe X Chen JJ Akabutu JK Buolamwini QJ Pittman 《Canadian Metallurgical Quarterly》1997,44(5):603-610
Ibogaine is a natural alkaloid of Voacanga africana that is effective in the treatment of withdrawal symptoms and craving in drug addicts. As the synaptic and cellular basis of ibogaine's actions are not well understood, this study tested the hypothesis that ibogaine and Voacanga africana extract modulate neuronal excitability and synaptic transmission in the parabrachial nucleus using the nystatin perforated patch-recording technique. Ibogaine and Voacanga africana extract dose dependently, reversibly, and consistently attenuate evoked excitatory synaptic currents recorded in parabrachial neurons. The ED50 of ibogaine's effect is 5 microM, while that of Voacanga africana extract is 170 micrograms/ml. At higher concentrations, ibogaine and Voacanga africana extract induce inward currents or depolarization that are accompanied by increases in evoked and spontaneous firing rate. The depolarization or inward current is also accompanied by an increase in input resistance and reverses polarity around 0 mV. The depolarization and synaptic depression were blocked by the dopamine receptor antagonist haloperidol. These results indicate that ibogaine and Voacanga africana extract 1) depolarize parabrachial neurons with increased excitability and firing rate; 2) depress non-NMDA receptor-mediated fast synaptic transmission; 3) involve dopamine receptor activation in their actions. These results further reveal that the Voacanga africana extract has one-hundredth the activity of ibogaine in depressing synaptic responses. Thus, ibogaine and Voacanga africana extract may produce their central effects by altering dopaminergic and glutamatergic processes. 相似文献
18.
Using in situ hybridization we show that expression of the c-fos oncogene, a gene normally associated with osteosarcomas, is greatly elevated in osteoclasts of patients with Paget's disease. Immunohistochemical staining with c-fos antibodies also shows increased protein in pagetic osteoclasts. In light of transgenic mouse experiments showing a key role for c-fos in bone resorption, we propose that elevated c-fos gene expression in pagetic osteoclasts is an important component in producing the pagetic phenotype. Levels of c-fos gene and protein expression in pagetic osteoblasts are lower than those detected in osteoclasts but still higher than in nonpagetic osteoblasts. This may provide an explanation for the increased incidence of osteosarcomas in patients with Paget's disease because overexpression of c-fos in osteoblasts of transgenic mice induces osteosarcoma formation. 相似文献
19.
Retinal neurons that express the immediate early gene c-fos after light exposure were characterized by neurotransmitter content using histochemical and immunocytochemical staining. In Northern blots the amount of c-fos mRNA peaked at 30 min, but remained detectable 60 min following light stimulation. Fos proteins were seen in the inner nuclear and ganglion cell layers, and the staining was most intense two and three hours after beginning the light exposure. In the ganglion cell layer 30-40% of Fos-immunoreactive cells were cholinergic displaced amacrine cells and 3-5% were ganglion cells. In the inner nuclear layer 24% of Fos-immunoreactive cells were Type I and 7% Type II NADPH-diaphorase-reactive (nitric oxide synthase) amacrine cells, 11% were tyrosine hydroxylase-containing cells, and 10-15% cholinergic amacrine cells. No Fos immunoreactivity was seen in serotoninergic, somatostatin- or VIP-immunoreactive cells, bipolar, horizontal or photoreceptor cells. Nicotine, kainic acid, NMDA and SCH 38393, a dopamine D1 receptor agonist, induced Fos immunostaining in the inner nuclear and ganglion cell layers, but administration of the corresponding receptor blockers mecamylamine, kynuretic acid, MK-801, haloperidol and SCH 23990 did not prevent light-induced Fos expression. 相似文献
20.
The pontine parabrachial nucleus, which is a key structure in the central processing of autonomic, nociceptive and gustatory information, is rich in a variety of neuropeptides. In this study we have analysed the distribution of parabrachial neurons that express preproenkephalin messenger RNA, which encodes for the precursor protein for enkephalin opioids. Using an in situ hybridization method, we found that preproenkephalin messenger RNA-expressing neurons were present in large numbers in four major areas of the parabrachial nucleus: the K?lliker-Fuse nucleus, the external lateral subnucleus, the ventral lateral subnucleus, and in and near the internal lateral subnucleus. Many preproenkephalin messenger RNA-expressing neurons were also seen in the central lateral subnucleus, and in the medial and external medial subnuclei. Few labeled neurons were found in the dorsal and superior lateral subnuclei. Injection of the retrograde tracer substance cholera toxin subunit B into the midline and intralaminar thalamus demonstrated that the enkephalinergic neurons in and near the internal lateral subnucleus were thalamic-projecting neurons. Taken together with the results of previous tract-tracing studies, the present findings show that many of the enkephalinergic cell groups in the parabrachial nucleus are located within the terminal zones of the ascending projections that originate from nociresponsive neurons in the medullary dorsal horn and spinal cord, as well as from viscerosensory neurons within the nucleus of the solitary tract. The enkephalinergic neurons in the parabrachial nucleus may thus transmit noci- and visceroceptive-related information to their efferent targets. On the basis of the present and previous observations, we conclude that these targets include the intralaminar and midline thalamus, the ventrolateral medulla and the spinal cord. Through these connections, nociceptive and visceroceptive stimuli may influence several functions, such as arousal, respiration and antinociception. 相似文献