首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
研究了乙醇胁迫对啤酒酵母生长的影响,应用光镊拉曼光谱(LTRS)技术获得并分析酵母单细胞拉曼光谱,从分子水平分析酿酒酵母细胞内的蛋白质组变化。结果表明乙醇可抑制酵母生长,随着乙醇浓度的提高,酵母细胞直径变小、稳定期推迟、生物量和蛋白质含量也呈减少趋势;通过光镊拉曼光谱分析可了解酵母细胞内的乙醇浓度和生化组成的相对含量等信息;在不同乙醇浓度下,采用SDS变性凝胶电泳(SDS-PAGE)共检测到22个明显的差异条带,并对其中7个差异条带进行质谱鉴定,发现这7个差异蛋白的功能主要与端粒稳定性、细胞自溶及代谢相关;不同乙醇浓度可诱导酵母特定蛋白质表达发生变化,如HSP104等蛋白质,说明这些蛋白质所参与的代谢途径在啤酒酵母乙醇耐性中具有普遍作用。  相似文献   

3.
When Saccharomyces cerevisiae CBS 8066 was grown under maltose limitation, two enzymes specific for maltose utilization were present: a maltose carrier, and the maltose-hydrolysing alpha-glucosidase. The role of these two enzymes in the physiology of S. cerevisiae was investigated in a comparative study in which Candida utilis CBS 621 was used as a reference organism. Maltose pulses to a maltose-limited chemostat culture of S. cerevisiae resulted in 'substrate-accelerated death'. This was evident from: (1) enhanced protein release from cells; (2) excretion of glucose into the medium; (3) decreased viability. These effects wee specific with respect to both substrate and organism: pulses of glucose to maltose-limited cultures of S. cerevisiae did not result in cell death, neither did maltose pulses to maltose-limited cultures of C. utilis. The maltose-accelerated death of s. cerevisiae is most likely explained in terms of an uncontrolled uptake of maltose into the cell, resulting in an osmotic burst. Our results also provide evidence that the aerobic alcoholic fermentation that occurs after pulsing sugars to sugar-limited cultures of s. cerevisiae (short-term Crabtree effect) cannot solely be explained in terms of the mechanism of sugar transport. Both glucose and maltose pulses to maltose-limited cultures triggered aerobic alcohol formation. However, glucose transport by S. cerevisiae occurs via facilitated diffusion, whereas maltose entry into this yeast is mediated by a maltose/proton symport system.  相似文献   

4.
Glycogen in Saccharomyces cerevisiae is present in two pools, one soluble and intracellular, the other present in the cell wall and rendered water-insoluble owing to its covalent linkage to cell wall beta-glucan. The insoluble glycogen fraction was solubilized using beta-1,3-glucanase. The alpha beta-glucan complex obtained showed intense red staining with iodine and was isolated from free beta-glucans by affinity chromatography using concanavalin A sepharose 4B. Further use of molecular sieving has confirmed that glycogen is linked to beta-glucan as the non-retained fraction on Biogel P2 split into two peaks on treatment with amyloglucosidase. Partial acid hydrolysis and subsequent paper chromatography of the alpha beta-glucan complex isolated revealed the presence of gentiobiose and other higher oligosaccharides, indicating that glycogen is linked to beta-1,3-glucan through a beta-1,6 branch. The insoluble glycogen can be extracted in a soluble form by acetic acid treatment and is known as acid-soluble glycogen. The presence of glycogen in the cell wall is confirmed by controlled enzymatic release of alpha beta-glucan complex using lyticase from Arthobacter luteus without disruption of the plasma membrane, as can be visualized using electron microscopy.  相似文献   

5.
Proliferation of microbodies in Saccharomyces cerevisiae   总被引:27,自引:0,他引:27  
The development of microbodies in the yeast Saccharomyces cerevisiae was studied in response to different conditions of growth. Various strains of S. cerevisiae were investigated, using cells from the exponential growth phase on glucose as an inoculum in all transfer experiments. Electron microscopy, including serial sectioning, revealed that these cells generally contained one to four small microbodies which were localized in the vicinity of the cell wall and characterized by the presence of catalase. Transfer of these glucose-grown cells into media supplemented with various compounds known to induce microbody proliferation in other yeasts--i.e. uric acid, alkylated amines, amino acids, C2-compounds such as ethanol or acetate, in the presence or absence of compounds that induce oxygen radical formation--did not result in a significant change in the number of microbody profiles observed. Marked microbody proliferation was, however, observed after a shift of cells into media containing oleic acid and was associated with the induction of activities of beta-oxidation enzymes. In addition, catalase and isocitrate lyase were present in enhanced levels. Kinetic experiments suggested that these microbodies developed from those originally present in the inoculum cells. In thin sections up to 14 microbody profiles were occasionally observed, often present in small clusters. Their ultimate volume fraction amounted to 8-10% of the cytoplasmic volume.  相似文献   

6.
The vital lipophilic dye N‐(3‐triethylammoniumpropyl)‐4‐[6‐(4‐(diethylamino)phenyl]hexatrienyl) pyridinium dibromide (FM 4‐64) was used to study the effect of ethanol stress and heat shock on endocytosis in the yeast Saccharomyces cerevisiae. Yeast cells stained with FM 4‐64 were placed in a culture chamber and the internalization of the dye was monitored by fluorescence microscopy during perfusion of the cells with fresh growth medium. In the absence of ethanol in the perfusion medium, the internalization of FM 4‐64 from the plasma membrane to the vacuolar membrane by yeast cells harvested from the exponential phase of growth was completed in 30 min. The presence of 6% (v/v) ethanol in the perfusion medium had no obvious effect on the internalization of FM 4‐64 from the plasma membrane, but did lead to an accumulation of the dye in endocytic intermediates. Consequently, vacuolar membrane staining was delayed. Cells stained with FM 4‐64 and subjected to heat shock displayed a similar effect, with endocytic intermediates becoming more prominent with the severity of the heat shock. For both ethanol stress and heat shock, vacuolar morphology altered from segregated structures to a single, large organelle. The findings of this study reinforce previous observations that ethanol stress and heat shock induce similar responses in yeast. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

7.
8.
Regulation of cystathionine gamma-lyase in Saccharomyces cerevisiae.   总被引:1,自引:0,他引:1  
Regulation of the two enzymes in reverse trans-sulfuration was investigated in Saccharomyces cerevisiae. In wild-type strains, cystathionine gamma-lyase, but not cystathionine beta-synthase, was depressed nearly 15-fold if cells were starved for both inorganic and organic sulfur compounds. In a met17 strain which is defective of O-acetylserine and O-acetylhomoserine sulfhydrylase, the same enzyme was derepressed if organic sulfur compounds were limited; the repressive effect was in the order of glutathione greater than methionine greater than cysteine. The repressive effect of methionine was not observed, however, in a cys2 cys4 strain which is deficient of serine O-acetyltransferase and cystathionine beta-synthase, indicating that methionine itself is not the effector. The weak repressive effect of cysteine was attributed to inefficient uptake of this amino acid. Our observations indicate that cystathionine gamma-lyase is the target of regulation in reverse trans-sulfuration and that cysteine is very likely to be the effector of this regulation.  相似文献   

9.
Fks1p and Fks2p are related proteins thought to be catalytic subunits of the beta-1,3-glucan synthase. Analysis of fks1 delta mutants showed a partial K1 killer toxin-resistant phenotype and a 30% reduction in alkali-soluble beta-1,3-glucan that was accompanied by a modest reduction in beta-1,6-glucan. The gas1 delta mutant lacking a 1,3-beta-glucanosyltransferase displayed a similar reduction in alkali-soluble beta-1,3-glucan but did not share the beta-1,6-glucan defect, indicating that beta-1,6-glucan reduction is not a general phenotype among beta-1,3-glucan biosynthetic mutants. Overexpression of FKS2 suppressed the killer toxin phenotype of fks1 delta mutants, implicating Fks2p in the biosynthesis of the residual beta-1,6-glucan present in fks1 delta cells. In addition, eight out of 12 fks1ts fks2 delta mutants had altered beta-glucan levels at the permissive temperature: the partial killer resistant FKS1F1258Y N1520D allele was severely affected in both polymers and displayed a 55% reduction in beta-1,6-glucan, while the in vitro hyperactive allele FKS1T605I M761T increased both beta-glucan levels. These beta-1,6-glucan phenotypes may be due to altered availability of, and structural changes in, the beta-1,3-glucan polymer, which might serve as a beta-1,6-glucan acceptor at the cell surface. Alternatively, Fks1p and Fks2p could actively participate in the biosynthesis of both polymers as beta-glucan transporters. We analysed Fks1p and Fks2p in beta-1,6-glucan deficient mutants and found that they were mislocalized and that the mutants had reduced in vitro glucan synthase activity, possibly contributing to the observed beta-1,6-glucan defects.  相似文献   

10.
Two open reading frames, YIL042c (PKP1) and YGL059w, with 25% sequence similarity to human pyruvate dehydrogenase kinases, were shown to have protein kinase activity. Using GFP fusions, it was demonstrated that the proteins localize in discrete submitochondrial regions. Strains with a null mutation in these loci grew poorly on acetate and ethanol as carbon sources. Doubling times increased from ca. 4 h in the wild-type to > 6 h for the mutants. Growth rates of the mutants could be restored to wild-type levels by simultaneous disruption of the PDA1 gene, encoding the E1alpha subunit of the pyruvate dehydrogenase complex. This observation and the pyruvate dehydrogenase activities measured in the mutant strains and the wild-type grown on glucose or acetate suggest that the slow growth phenotype on C2 carbon sources is caused by a futile cycle in which phosphoenolpyruvate is converted back to acetyl coenzyme A.  相似文献   

11.
为了得到具有高富锌能力的酵母菌,该研究以面包来源的酵母菌DLY28为出发菌株,重复驯化后筛选获得一株优良耐锌酵母,并通过单因素试验及响应面试验对其富锌培养基进行优化。结果表明,通过驯化筛选得到一株优良耐锌酵母S7,其富锌的最优培养基组成为蔗糖含量82 g/L、胰蛋白胨含量26 g/L、锌含量404 mg/L。在此最优条件下,富锌酵母S7的锌吸附量为18.79 mg/g,生物量(OD600 nm值)为1.49。该研究为富锌酵母的生产以及食品有机锌的开发应用提供理论依据。  相似文献   

12.
13.
The Isw2p-Itc1p chromatin remodelling complex of Saccharomyces cerevisiae is a member of the ISWI class of ATPases with a nucleosome spacing activity, involved in regulation of expression of a broad spectrum of genes. Its absence causes derepression of a-specific genes and aberrant morphology in alpha-mating type cells. We report here that the deletion of the ISW2 gene in the originally non-invasive BY strain induces mating type-specific invasive growth strongly affected by nitrogen starvation. Although the Flo11 protein was postulated to be critical for haploid invasive growth, we showed that the invasive growth caused by the isw2 and itc1 deletions in alpha-mating type cells was Flo11p-independent. This type of invasive growth was proved to be a consequence of the activation of the pheromone response pathway. Our results suggest that Isw2 and Itc1 proteins do not have the same impact on the described phenomenon.  相似文献   

14.
We have engineered recombinant yeast to perform stereospecific hydroxylation of dehydroepiandrosterone (DHEA). This mammalian pro-hormone promotes brain and immune function; hydroxylation at the 7alpha position by P450 CYP7B is the major pathway of metabolic activation. We have sought to activate DHEA via yeast expression of rat CYP7B enzyme. Saccharomyces cerevisiae was found to metabolize DHEA by 3beta-acetylation; this was abolished by mutation at atf2. DHEA was also toxic, blocking tryptophan (trp) uptake: prototrophic strains were DHEA-resistant. In TRP(+) atf2 strains DHEA was then converted to androstene-3beta,17beta-diol (A/enediol) by an endogenous 17beta-hydroxysteroid dehydrogenase (17betaHSD). Seven yeast polypeptides similar to human 17betaHSDs were identified: when expressed in yeast, only AYR1 (1-acyl dihydroxyacetone phosphate reductase) increased A/enediol accumulation, while the hydroxyacyl-CoA dehydrogenase Fox2p, highly homologous to human 17betaHSD4, oxidized A/enediol to DHEA. The presence of endogenous yeast enzymes metabolizing steroids may relate to fungal pathogenesis. Disruption of AYR1 eliminated reductive 17betaHSD activity, and expression of CYP7B on the combination background (atf2, ayr1, TRP(+)) permitted efficient (>98%) bioconversion of DHEA to 7alpha-hydroxyDHEA, a product of potential medical utility.  相似文献   

15.
Lipomyces kononenkoae secretes a battery of highly effective amylases (i.e. alpha-amylase, glucoamylase, isoamylase and cyclomaltodextrin glucanotransferase activities) and is therefore considered as one of the most efficient raw starch-degrading yeasts known. Previously, we have cloned and characterized genomic and cDNA copies of the LKA1 alpha-amylase gene from L. kononenkoae IGC4052B (CBS5608T) and expressed them in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Here we report on the cloning and characterization of the genomic and cDNA copies of a second alpha-amylase gene (LKA2) from the same strain of L. kononenkoae. LKA2 was cloned initially as a 1663 bp cDNA harbouring an open reading frame (ORF) of 1496 nucleotides. Sequence analysis of LKA2 revealed that this ORF encodes a protein (Lka2p) of 499 amino acids, with a predicted molecular weight of 55,307 Da. The LKA2-encoded alpha-amylase showed significant homology to several bacterial cyclomaltodextrin glucanotransferases and also to the alpha-amylases of Aspergillus nidulans, Debaryomyces occidentalis, Saccharomycopsis fibuligera and Sz. pombe. When LKA2 was expressed under the control of the phosphoglycerate kinase gene promoter (PGK1(p)) in S. cerevisiae, it was found that the genomic copy contained a 55 bp intron that impaired the production of biologically active Lka2p in the heterologous host. In contrast to the genomic copy, the expression of the cDNA construct of PGK1p-LKA2 in S. cerevisiae resulted in the production of biologically active alpha-amylase. The LKA2-encoded alpha-amylase produced by S. cerevisiae exhibited a high specificity towards substrates containing alpha-1,4 glucosidic linkages. The optimum pH of Lka2p was found to be 3.5 and the optimum temperature was 60 degrees C. Besides LKA1, LKA2 is only the second L. kononenkoae gene ever cloned and expressed in S. cerevisiae. The cloning, characterization and co-expression of these two genes encoding these highly efficient alpha-amylases form an important part of an extensive research programme aimed at the development of amylolytic strains of S. cerevisiae for the efficient bioconversion of starch into commercially important commodities.  相似文献   

16.
Scope: Lunasin is an arginine‐glycine‐aspartic acid (RGD) cancer preventive peptide. The objective was to evaluate the potential of lunasin to induce apoptosis in human colon cancer cells and their oxaliplatin‐resistant (OxR) variants, and its effect on the expression of human extracellular matrix and adhesion genes. Methods and results: Various human colon cancer cell lines which underwent metastasis were evaluated in vitro using cell flow cytometry and fluorescence microscopy. Lunasin cytotoxicity to different colon cancer cells correlated with the expression of α5b1 integrin, being most potent to KM12L4 cells (IC50 = 13 μM). Lunasin arrested cell cycle at G2/M phase with concomitant increase in the expression of cyclin‐dependent kinase inhibitors p21 and p27. Lunasin (5–25 μM) activated the apoptotic mitochondrial pathway as evidenced by changes in the expressions of Bcl‐2, Bax, nuclear clusterin, cytochrome c and caspase‐3 in KM12L4 and KM12L4‐OxR. Lunasin increased the activity of initiator caspase‐9 leading to the activation of caspase‐3 and also modified the expression of human extracellular matrix and adhesion genes, downregulating integrin α5, SELE, MMP10, integrin β2 and COL6A1 by 5.01‐, 6.53‐, 7.71‐, 8.19‐ and 10.10‐fold, respectively, while upregulating COL12A1 by 11.61‐fold. Conclusion: Lunasin can be used in cases where resistance to chemotherapy developed.  相似文献   

17.
18.
研究酿酒酵母对乙醇耐受性的机理,对于发展乙醇生产有重要意义.酿酒酵母乙醇耐受性涉及到基因组水平上许多基因的复杂的相互作用,已知许多影响细胞膜的完整性和通透性、细胞壁结构、蛋白质构象,以及糖和氨基酸等的吸收等基因都与乙醇耐受性有关,与乙醇诱导相关的基因往往也与其他的环境因素如渗透压、热激、化学毒性、氧化压力等诱导的基因有关或重叠.因此,从基因转录动力学研究酿酒酵母乙醇耐受性并通过全转录工程构建乙醇耐受性工程菌己成为重要的研究热点.该文对近年来酿酒酵母乙醇耐受性分子机理以及全转录工程构建工程菌的研究作一综述,旨在为了解酵母乙醇耐受性机理和培育乙醇耐受性高产酵母菌株提供参考.  相似文献   

19.
The synthesis of beta-1,3-glucan, the structural component of the yeast cell wall that gives shape to the cell, occurs at the plasma membrane and is the result of the activity of at least a two-component complex. Fks1p is the catalytic subunit directly responsible for the synthesis of beta-1,3-glucan, whilst the second subunit, Rho1p, has a GTP-dependent regulatory role (Yamochi et al., 1994). RHO1 has been characterized in Saccharomyces cerevisiae (Yamochi et al., 1994), and in several other fungal species. In this work, we have used degenerate oligonucleotides derived from the conserved regions of Rho1ps to isolate the RHO1 gene of Yarrowia lipolytica. The gene isolated in this way, which we have named YlRHO1, encodes a 204 amino acid protein that shows a high degree of homology with other Rho1ps. However, unlike S. cerevisiae, the ylrho1Delta disruptant strain in Y. lipolytica is viable, although it exhibits an increased sensitivity to Calcofluor white and Congo red. Also, YlRHO1 complements rho1 lethality in S. cerevisiae at both 28 degrees C and 37 degrees C. The complete sequence of YlRHO1 can be obtained from GenBank under Accession No. AF279915.  相似文献   

20.
Reporter-gene assays that employ the Escherichia coli lacZ gene are ubiquitously employed in biological research. However, we were not able to readily identify a quantitative method that worked reliably with yeast (Saccharomyces cerevisiae) cells and that was compatible with high-throughput screening and robotic liquid handling tools. We have therefore adapted a commercially available assay employing a 6-O-beta-galactopyranosyl-luciferin substrate to provide the required sensitivity with minimal sample handling times. Our assay uses only one-tenth of the reagents suggested by the reagent manufacturer (Promega) for equivalent assays with mammalian cell cultures and produces rapid, sensitive and reproducible analysis with as little as 1 microl yeast cell culture and with < 100 cells. We demonstrate that the assay is compatible with yeast strains generated by the systematic yeast deletion project and functions equally well with genomically integrated or plasmid-encoded lacZ reporters and with cells grown in complex or defined media. The high-sensitivity, miniaturized format reduced sample handling required will make this assay useful for a wide range of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号