首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We simulate the effect that insulating or shielding a muscle may have on electromyographic signal propagation using the finite element method. The results suggest that the crosstalk between insulated or shielded muscles is small but that it increases with increasing subcutaneous fat. The findings may be useful in the control of multifunctional prostheses.  相似文献   

2.
为了在滤除表面肌电信号检测中的工频干扰,在硬件检测电路中采用屏蔽检测单元、隔离检测设备、设备良好接地等方法;数字滤波部分结合实际,使用集合经验模式算法,由集合经验模式算法分解出的本征模态函数构成自适应滤波器。最后经过使用最小均方误差算法以及配合集合经验模式算法提高自适应滤波器的运算效率。为评定该自适应滤波器性能,实验基于Matlab及硬件采集设备进行了手前臂表面肌电信号检测和滤波,结果表明所设计的方法对不同相位、不同频率的工频干扰都有良好的抑制消除作用。  相似文献   

3.
We propose a new electromyogram generation and detection model. The volume conductor is described as a nonhomogeneous (layered) and anisotropic medium constituted by muscle, fat and skin tissues. The surface potential detected in space domain is obtained from the application of a two-dimensional spatial filter to the input current density source. The effects of electrode configuration, electrode size and inclination of the fibers with respect to the detection system are included in the transfer function of the filter. Computation of the signal in space domain is performed by applying the Radon transform; this permits to draw considerations about spectral dips and clear misunderstandings in previous theoretical derivations. The effects of generation and extinction of the action potentials at the fiber end plate and at the tendons are included by modeling the source current, without any approximation of its shape, as a function of space and time and by using again the Radon transform. The approach, based on the separation of the temporal and spatial properties of the muscle fiber action potential and of the volume conductor, includes the capacitive tissue properties.  相似文献   

4.
5.
A finite-element model for the generation of single fiber action potentials in a muscle undergoing various degrees of fiber shortening is developed. The muscle is assumed fusiform with muscle fibers following a curvilinear path described by a Gaussian function. Different degrees of fiber shortening are simulated by changing the parameters of the fiber path and maintaining the volume of the muscle constant. The conductivity tensor is adapted to the muscle fiber orientation. In each point of the volume conductor, the conductivity of the muscle tissue in the direction of the fiber is larger than that in the transversal direction. Thus, the conductivity tensor changes point-by-point with fiber shortening, adapting to the fiber paths. An analytical derivation of the conductivity tensor is provided. The volume conductor is then studied with a finite-element approach using the analytically derived conductivity tensor. Representative simulations of single fiber action potentials with the muscle at different degrees of shortening are presented. It is shown that the geometrical changes in the muscle, which imply changes in the conductivity tensor, determine important variations in action potential shape, thus affecting its amplitude and frequency content. The model provides a new tool for interpreting surface EMG signal features with changes in muscle geometry, as it happens during dynamic contractions.  相似文献   

6.
A model of EMG generation   总被引:16,自引:0,他引:16  
  相似文献   

7.
Most models for surface electromyography (EMG) signal generation are based on the assumption of space-invariance of the system in the direction of source propagation. This assumption implies the same shape of the potential distribution generated by a source in any location along the propagation direction. In practice, the surface EMG generation system is not space invariant and, therefore, the surface signal detected along the direction of the muscle fibers may significantly change shape along the propagation path. An important class of nonspace invariant systems is that of volume conductors inhomogeneous in the direction of source propagation. In this paper, we focused on inhomogeneities introduced by the presence of spheres of different conductivities with respect to the tissue where they are located. This effect may prove helpful to model the presence of glands, vessels, or local changes in the conductivity of a tissue. We present an approximate analytical solution that accounts for an arbitrary number of spheres in an arbitrary complex volume conductor. As a representative example, we propose the solution for a planar layered volume conductor, comprised of fat and muscle layers with spherical inhomogeneities inside the fat layer. The limitations of the approximations introduced are discussed. The model is computationally fast and constitutes an advanced means for the analysis and interpretation of surface EMG signal features.  相似文献   

8.
Volume conduction in an anatomically based surface EMG model   总被引:4,自引:0,他引:4  
A finite-element model to simulate surface electromyography (EMG) in a realistic human upper arm is presented. The model is used to explore the effect of limb geometry on surface-detected muscle fiber action potentials. The model was based on magnetic resonance images of the subject's upper arm and includes both resistive and capacitive material properties. To validate the model geometry, experimental and simulated potentials were compared at different electrode sites during the application of a subthreshold sinusoidal current source to the skin surface. Of the material properties examined, the closest approximation to the experimental data yielded a mean root-mean-square (rms) error of the normalized surface potential of 18% or 27%, depending on the site of the applied source. Surface-detected action potentials simulated using the realistic volume conductor model and an idealized cylindrical model based on the same limb geometry were then compared. Variation in the simulated limb geometry had a considerable effect on action potential shape. However, the rate of decay of the action potential amplitude with increasing distance from the fiber was similar in both models. Inclusion of capacitive material properties resulted in temporal low-pass filtering of the surface action potentials. This effect was most pronounced in the end-effect components of action potentials detected at locations far from the active fiber. It is concluded that accurate modeling of the limb geometry, asymmetry, tissue capacitance and fiber curvature is important when the specific action potential shapes are of interest. However, if the objective is to examine more qualitative features of the surface EMG signal, then an idealized volume conductor model with appropriate tissue thicknesses provides a close approximation.  相似文献   

9.
The detection volume of the surface electromyographic (EMG) signal was explored using a finite-element model, to examine the feasibility of obtaining independent myoelectric control signals from regions of reinnervated muscle. The selectivity of the surface EMG signal was observed to decrease with increasing subcutaneous fat thickness. The results confirm that reducing the interelectrode distance or using double-differential electrodes can increase surface EMG selectivity in an inhomogeneous volume conductor. More focal control signals can be obtained, at the expense of increased variability, by using the mean square value, rather than the root mean square or average rectified value.  相似文献   

10.
The averaged instantaneous frequency (AIF) is proposed as an alternative method for the frequency analysis of surface electromyography (EMG) in the study of muscle fatigue during sustained, isometric muscle contractions. Results from performance analysis using experimental EMG signals demonstrate the low variability of the proposed frequency variable. Indeed, the AIF measure is shown to perform significantly better than the widely used mean and median frequency variables, in terms of robustness to the length of the analysis window.  相似文献   

11.
提出了一种基于区域分解的二维有限元法分析多层印制电路板电源/地平面中过孔转换结构的信号完整性.过孔电流产生的电磁场呈三维结构,其中,一部分电磁波沿过孔轴向传输,另一部分电磁波在电源/地平面间沿径向传播.采用一虚拟柱面将求解区域分割为过孔区和电源/地平面区.将过孔区建模为以周向磁场为主分量的二维轴对称问题,而将电源/地平面区建为以垂直电场为主分量的二维模型.首先求解电源/地平面区的二维边值问题获得分割边界上节点的波阻抗,然后将该波阻抗代入过孔区模型中分割边界节点的边界条件,从而计算出过孔信号传输的S参数.所提方法通过模型缩减可实现对微细过孔结构信号完整性的精确快速计算,且采用全波电磁场分析软件对算法的有效性和准确性进行了验证.  相似文献   

12.
This paper presents a new approach to the decomposition of electromyographic (EMG) signals. EMG signals consist of a superposition of delayed finite-duration waveforms that carry the information about the firing of different muscle fiber groups. The new approach is based on a communication technical interpretation of the EMG signal. The source is modeled as a signaling system with intersymbol-interference, which encodes a well defined sparse information sequence. This point of view allows a maximum-likelihood (ML) as well as a maximum a posteriori (MAP) estimation of the underlying firing pattern to be made. The high accuracy attainable with the proposed method is illustrated both with measured and artificially generated EMG signals  相似文献   

13.
《Solid-state electronics》1987,30(5):473-477
A finite element, resistive network analog model is presented and applied to p-i-n magnetodiodes at a microwave frequencies. The network analog model is outlined and verified with microwave measurements on a mesa-style p-i-n diode. The microwave measurements, coupled with data obtained by the model, are shown to provide a measure of the ambipolar mobility in the i-region of the semiconductor device. The magnetosensitivity of the magnetodiode as a function of geometry is also discussed.  相似文献   

14.
In this paper, the multidimensional multiscale parser (MMP) is employed for encoding electromyographic signals. The experiments were carried out with real signals acquired in laboratory and show that the proposed scheme is effective, outperforming even wavelet-based state-of- the-art schemes present in the literature in terms of percent root mean square difference times compression ratio.  相似文献   

15.
Thermal analysis of multiple-layer structures   总被引:1,自引:0,他引:1  
The response of temperature to dc and steady-state ac power inputs in multiple-layer rectangular structures has been derived by solving analytically the problem of heat flow in three dimensions. Attention is focused on electrothermal integrated circuit (IC) substrates consisting of a semiconductor, a thermal conductor, and a thermal insulator. The analysis applies as well to single-layer systems, such as conventional IC substrates, for which the transient response of temperature has also been found.  相似文献   

16.
This study analytically describes surface electromyogram (sEMG) signals generated by a model of a triangular muscle, i.e., a muscle with fibers arranged in a fan shape. Examples of triangular muscles in the human body are the deltoid, the pectoralis major, the trapezius, the adductor pollicis. A model of triangular muscle is proposed. It is a sector of a cylindrical volume conductor (with the fibers directed along the radial coordinate) bounded at the muscle/fat interface. The muscle conductivity tensor reflects the fan anisotropy. Edge effects have been neglected. A solution of the nonspace invariant problem for a triangular muscle is provided in the Fourier domain. An approximate analytical solution for a two plane layer volume conductor model is obtained by introducing a homogeneous layer (modeling the fat) over the triangular muscle. The results are implemented in a complete sEMG generation model (including the finite length of the fibers), simulating single fiber action potentials. The model is not space invariant due to the changes of the volume conductor along the direction of action potential propagation. Thus the detected potentials at the skin surface change shape as they propagate. This determines problems in the extraction and interpretation of parameters. As a representative example of application of the simulation model, the influence of the inhomogeneity of the volume conductor in conduction velocity (CV) estimation is addressed (for two channels; maximum likelihood and reference point methods). Different fiber depths, electrode placements and small misalignments of the detection system with respect to the fiber have been simulated. The error in CV estimation is large when the depth of the fiber increases, when the detection system is not aligned with the fiber and close to the innervation point and to the tendons.  相似文献   

17.
A nonspace invariant model of volume conductor for surface electromyography (EMG) signal generation is analytically investigated. The volume conductor comprises planar layers representing the muscle and subcutaneous tissues. The muscle tissue is homogeneous and anisotropic while the subcutaneous layer is inhomogeneous and isotropic. The inhomogeneity is modeled as a smooth variation in conductivity along the muscle fiber direction. This may reflect a practical situation of tissues with different conductivity properties in different locations or of transitions between tissues with different properties. The problem is studied with the regular perturbation theory, through a series expansion of the electric potential. This leads to a set of Poisson's problems, for which the source term in an equation and the boundary conditions are determined by the solution of the previous equations. This set of problems can be solved iteratively. The solution is obtained in the two-dimensional Fourier domain, with spatial angular frequencies corresponding to the longitudinal and perpendicular direction with respect to the muscle fibers, in planes parallel to the detection surface. The series expansion is truncated for the practical implementation. Representative simulations are presented. The proposed model constitutes a new approach for surface EMG signal simulation with applications related to the validation of methods for information extraction from this signal.  相似文献   

18.
Theoretical computations have been carried out on ridge acoustic surface waves using the finite-element method. The results obtained agree substantially with experiments performed previously.  相似文献   

19.
In this paper, we propose a hybrid classifier fusion scheme for motor unit potential classification during electromyographic (EMG) signal decomposition. The scheme uses an aggregator module consisting of two stages of classifier fusion: the first at the abstract level using class labels and the second at the measurement level using confidence values. Performance of the developed system was evaluated using one set of real signals and two sets of simulated signals and was compared with the performance of the constituent base classifiers and the performance of a one-stage classifier fusion approach. Across the EMG signal data sets used and relative to the performance of base classifiers, the hybrid approach had better average classification performance overall. For the set of simulated signals of varying intensity, the hybrid classifier fusion system had on average an improved correct classification rate (CCr) (6.1%) and reduced error rate (Er) (0.4%). For the set of simulated signals of varying amounts of shape and/or firing pattern variability, the hybrid classifier fusion system had on average an improved CCr (6.2%) and reduced Er (0.9%). For real signals, the hybrid classifier fusion system had on average an improved CCr (7.5%) and reduced Er (1.7%).  相似文献   

20.
A new large signal HBT model   总被引:3,自引:0,他引:3  
Several effects important for large signal operations of heterojunction bipolar transistor (HBTs) were not included in the previous HBT models used in most commercial circuit simulators. Exclusion of these effects resulted in large discrepancies between modeled and measured device characteristics. This paper presents a new large signal HBT model which takes into account those important effects for the device operation. The effects have been identified from measured device characteristics and can be justified from first principles. To make it easy to use, the model is made up of the elements available from SPICE. During the course of the model development, an extraction procedure for the model parameters has been established to minimize the uncertainty of the extracted parameter values. The new model has been applied to HBTs with various emitter sizes and excellent agreement has been achieved between modeled and measured data over a wide range of bias conditions and signal frequencies  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号