首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-16 is synthesized as a precursor molecule of 68 kDa (pro-IL-16) that is processed by caspase-3, a member of the IL-1 converting enzyme (ICE) family. This cleavage results in a 13-kDa carboxy terminal peptide, which constitutes the bioactive secreted form of IL-16. We have previously reported constitutive IL-16 mRNA expression and pro-IL-16 protein in CD4+ and CD8+ T cells. Although bioactive IL-16 protein is present in unstimulated CD8+ T cells, there is no bioactive IL-16 present in CD4+ T cells. Along these lines, unstimulated CD8+ T cells contain active caspase-3. In the current studies we investigated the regulation of IL-16 protein and mRNA expression in CD4+ T cells and determined the kinetics of secretion following stimulation of the TCR. CD4+ T cells release IL-16 protein following antigenic stimulation, and this release is accelerated in time by costimulation via CD28. However, CD3/CD28 costimulation did not alter IL-16 mRNA appearance or stability in either CD4+ or CD8+ T cells. The secretion of bioactive IL-16 from CD4+ T cells correlated with the appearance of cleavage of pro-caspase-3 into its 20-kDa active form. Thus, resting CD8+ T cells contain active caspase-3 that is capable of cleaving pro-IL-16, whereas CD4+ T cells require activation for the appearance of active caspase-3. The mechanism of release or secretion of bioactive IL-16 is currently unknown, but does not correlate with cellular apoptosis.  相似文献   

2.
3.
Multiple sclerosis (MS) is presumed to be a T-cell mediated chronic inflammatory disease of the central nervous system. Investigators previously demonstrated increased IFN-gamma (pro-inflammatory) and IL-10 (counterregulatory anti-inflammatory) in MS. The balance of pro-inflammatory and counterregulatory anti-inflammatory cytokines may be important in the stabilization of disease activity. Purified CD4+ and CD8+ T cells from patients with clinically definite, stable relapsing MS (RRMS) were stimulated by anti-CD3 mAb or Con A for 48 hours and cytokine supernatants analysed for production of IL-2, IL-6, IFN-gamma, TNF-alpha (potential pro-inflammatory) and IL-4, IL-10, and TGF-beta (potential counterregulatory anti-inflammatory). Con A activated CD4+ and CD8+ T cell proinflammatory cytokine IL-2 secretion, CD4+ T cell IL-6 secretion, CD4+ and CD8+ T cell TNF-alpha secretion and CD8+ T cell IFN-gamma secretion was decreased significantly in RRMS subjects compared to controls. CD3 activated CD4+ and CD8+ T cell IL-6 secretion and CD4+ T cell TNF-alpha secretion was significantly decreased in MS subjects compared to controls. In contrast, there was increased CD3-induced IFN-gamma in both CD4+ and CD8+ T cells and counterregulatory anti-inflammatory CD3-induced IL-10 secretion in CD4+ T cells in RRMS compared to controls. These data suggest that an equilibrium of a pro-inflammatory (IFN-gamma) and a counterregulatory anti-inflammatory (IL-10) cytokine may define stable clinically definite early RRMS.  相似文献   

4.
CD3gamma and CD3delta are the most closely related CD3 components, both of which participate in the TCRalphabeta-CD3 complex expressed on mature T cells. Interestingly, however, CD3delta does not appear to participate functionally in the pre-T-cell receptor (TCR) complex that is expressed on immature T cells: disruption of CD3delta gene expression has no effect on the developmental steps controlled by the pre-TCR. Here we report that in contrast with CD3delta, CD3gamma is an essential component of the pre-TCR. We generated mice selectively lacking expression of CD3gamma, in which expression of CD3delta, CD3epsilon, CD3zeta, pTalpha and TCRbeta remained undisturbed. Thus, all components for composing a pre-TCR are available, with the exception of CD3gamma. Nevertheless, T-cell development is severely inhibited in CD3gamma-deficient mice. The number of cells in the thymus is reduced to <1% of that in normal mice, and the large majority of thymocytes lack CD4 and CD8 and are arrested at the CD44-CD25+ double negative (DN) stage of development. Peripheral lymphoid organs are also practically devoid of T cells, with absolute numbers of peripheral T cells reduced to only 2-5% of those in normal mice. Both TCRalphabeta and TCRgammadelta lineages fail to develop effectively in CD3gamma-deficient mice, although absence of CD3gamma has no effect on gene rearrangements of the TCRbeta, delta and gamma loci. Furthermore, absence of CD3gamma results in a severe reduction in the level of TCR and CD3epsilon expression at the cell surface of thymocytes and peripheral T cells. The defect in the DN to double positive transition in mice lacking CD3gamma can be overcome by anti-CD3epsilon-mediated cross-linking. CD3gamma is thus essential for pre-TCR function.  相似文献   

5.
The lymphocyte activation gene-3 (LAG-3) molecule is a T cell activation Ag closely related to CD4 at the gene and protein levels. We investigated whether LAG-3 itself may down-regulate the immune response by interfering with TCR signaling. The binding of Ab to the LAG-3 molecule followed by cross-linking (XL) inhibits cell proliferation and cytokine secretion in response to CD3XL on activated T cells. LAG-3XL-induced down-regulation is associated with functional unresponsiveness, as well as with high CD25 expression levels and reversion by exogenous IL-2. It is also associated with a down-modulation of CD3/TCR complex expression. At the biochemical level, LAG-3XL inhibits calcium response to CD3 stimulation. This inhibition is observed with different LAG-3- and CD3-specific mAbs on condition that the two receptors are cross-linked together. Finally, the capping of CD3 was shown to induce cocapping of LAG-3 molecules. Together, these results show that CD3/TCR complex-associated LAG-3 molecules can play an active role in negatively regulating the CD3/TCR activation pathway. They ultimately suggest that LAG-3 is an inhibitory receptor in activated T lymphocytes.  相似文献   

6.
The CD3 epsilon and zeta chains of the TCR have been shown to possess independent signaling capabilities. Studies with chimeric molecules containing the cytoplasmic domains of either zeta or epsilon have suggested that these two structurally distinct members of the TCR-CD3 complex are able to function autonomously and have redundant features in the context of TCR-signal transduction in mature T cells. Expression of a chimeric human IL-2-receptor-zeta-chain molecule in the CD4+8+ T-cell line, DPK, has enabled us to directly analyze responses initiated by the zeta-chain-signaling module alone within the context of immature T-cell differentiation. In this paper, we show that antibody crosslinking of the chimeric zeta chain delivers only a limited activation signal as measured by Ca[2+] flux, induction of low-level CD5 expression, and minimal differentiation as assessed by loss of cell-surface CD8 expression. TCR-induced activation through antibody crosslinking of the endogenous CD3 epsilon receptor in the absence of costimulation was also relatively inefficient in initiating activation and differentiation. However, co-crosslinking of the CD4 coreceptor with CD3 resulted in a synergistic response, where as there was little effect of co-crosslinking of CD4 and the zeta-chain chimera. Striking differences were also observed in the substrate pattern of tyrosine phosphorylation, as well as lymphokine secretion following triggering through the intact TCR versus the zeta chain alone. These results indicate that although the zeta-chain may possess some signaling capacities similar to that of the intact TCR, it appears to have limited function as an autonomous subunit in initiating CD4+8+ T-cell differentiation.  相似文献   

7.
The mechanism of protective immunity and immunologic resistance against intracellular pathogens is believed to involve the activation of Ag-specific T cells. The T cells involved in protection/resistance to Leishmania can be studied using localized American cutaneous leishmaniasis (LCL) as a model, because the disease is often self-healing. Our study was undertaken to identify specific T cell populations that had accumulated in LCL lesions on the basis of TCR V beta gene usage. RNA was derived from skin lesions and blood of eight LCL patients, as well as from purified CD4+ and CD8+ subsets from the lesions and blood of three patients. After synthesis of cDNA, V beta gene usage was assessed by polymerase chain reaction. In all eight patients, several V beta gene families were overrepresented in lesions compared to blood. More importantly, the TCR V beta repertoires of both lesional CD4+ and CD8+ subsets were skewed compared to the repertoire of the respective subsets in the blood of the same donor. The overrepresented V beta s in the CD4+ and CD8+ subsets from lesions were in most instances disparate, particularly with the V beta 6 TCR skewed in the lesional CD8+ subset. Not only were the TCR repertoires of the overrepresented V beta in the lesional CD4+ and CD8+ subsets generally distinct, but the cytokine mRNA expressed by these subsets were also discrete. Strikingly, the CD4+ subset was characterized by IFN-gamma mRNA expression and the CD8+ subset by IL-4 and IL-10 mRNA expression. These data indicate that the pathogenesis of human leishmaniasis may be explained by the balance of CD4+ type 1 and CD8+ type 2 T cells, which probably recognize distinct sets of Ag.  相似文献   

8.
T lymphocytes normally express their Ag receptors in association with the CD3 proteins, which include CD3zeta. In CD3zeta eta(null) mice thymic and peripheral T lymphocytes do not express the TCR/CD3 complex on their surface due to retention in the endoplasmic reticulum of the remaining polypeptide chains. However, intestinal intraepithelial lymphocytes (iIEL) of CD3zeta eta(null) mice do express surface TCR, because the Fc epsilonRI gamma chain replaced the CD3zeta chain in the TCR/CD3 complex. Here we report that in a subset of CD8alpha alpha+ iIEL the presence of the Fc epsilonRI gamma chain could be accounted for by the surface expression of the Fc gammaRIII(CD16) complex. Because in wild-type (wt) mice only CD16+ iIEL coexpressed Fc epsilonRI gamma and CD3zeta, we concluded that the presence of Fc epsilonRI gamma was dictated by its required participation of CD16 complex. CD8alpha alpha+ iIEL bearing CD16 and B220 were also detected in the intestinal mucosa of RAG-2(null) mice from 12 days after birth onward. Two independent experimental settings were used in an attempt to demonstrate that CD16+ iIEL matured into CD16- T cells. First, in the RAG-2(null) mice, iIEL responded to in vivo administration of an anti-CD3epsilon mAb by progression to a more mature stage of development, characterized by a loss of CD16 and B220. Secondly, a conversion to CD16- iIEL occurred upon transfer of wt CD16+ iIEL into RAG-2(null) mice. We conclude from these experiments that in both RAG-2(null) and wt mice, a precursor/progeny relationship may exists between CD16+ B220+ CD8alpha alpha+ and CD16- B220- CD8alpha alpha+ iIEL.  相似文献   

9.
The increased susceptibility of neonates to infections has been ascribed to the immaturity of their immune system. More particularly, T cell-dependent responses were shown to be biased towards a Th2 phenotype. Our studies on the in vitro maturation of umbilical cord blood T cells suggest that the Th2 bias of neonatal response cannot be simply ascribed to intrinsic properties of neonatal T cells. Phenotypically, neonatal CD4+ T cells are more immature than their adult CD45RO-/RA+ naive counterparts and they contain a subset (10-20%) of CD45RO-/RA+ CD31- cells which is very low in adults and displays some unique functional features. The activation and maturation of neonatal CD4+ T cells is particularly dependent upon the strength of CD28-mediated cosignal which dictates not only the cytokine profile released upon primary activation but also the response to IL-12. Activation of adult as well as neonatal CD4+ T cells in the context of low CD28 costimulation yields to the production of low levels of only one cytokine, i.e. IL-2. In contrast, strong CD28 costimulation supports the production of high levels of type 1 (IL-2, IFN gamma and TNF beta) and low levels of type 2 (IL-4 and IL-13) cytokines by neonatal T cells. The low levels of naive T cell-derived IL-4 are sufficient to support their development into high IL-4/IL-5 producers by an autocrine pathway. The ability of IL-12 to prime neonatal CD4+ T cells for increased production of IL-4 (in addition to IFN gamma) is observed only when CD28 cosignal is minimal. Under optimal activation conditions (i.e. with anti-CD3/B7.1 or allogenic dendritic cells) the response and the maturation of neonatal and adult naive T cells are similar. Thus the Th2 bias of neonatal immune response cannot be simply ascribed to obvious intrinsic T cell defect but rather to particular conditions of Ag presentation at priming. Unlike CD4+ T cells, neonatal CD8+ T cells strictly require exogenous IL-4 to develop into IL-4/IL-5 producers. Most importantly, anti-CD3/B7-activated neonatal CD8 T cells coexpress CD4 as well as CCR5 and CXCR4 and are susceptible to HIV-1 infection in vitro.  相似文献   

10.
Although both the CD4 and CD8 molecules enhance antigen responsiveness mediated by the T cell receptor (TCR), it is not known whether CD4 and CD8 initiate similar or different intracellular signals when they act as coreceptors. To characterize the early signals transmitted by CD4 and CD8, both CD4 and CD8 alpha were expressed in the same murine T cell hybridoma. In the double positive transfectants, CD4 and CD8 associated with equal amounts of p56lck (Lck), and both molecules enhanced interleukin 2 (IL-2) production equivalently when cross-linked with suboptimal levels of anti-TCR antibody. However, in an in vitro kinase assay, cross-linking CD4 initiated fourfold greater kinase activity compared with CD8 cross-linking. In the same assay, when CD4 or CD8 was cross-linked to the TCR, novel phosphorylated proteins were found associated with the TCR/CD4 complex but not with the TCR/CD8 complex. Consistent with this data, antiphosphotyrosine immunoblotting revealed greater tyrosine phosphorylation of intracellular substrates after TCR/CD4 cross-linking compared with TCR/CD8 cross-linking. Additionally, a specific protein kinase C inhibitor (RO318220) inhibited CD8-mediated enhancement of IL-2 production far more effectively than CD4-mediated enhancement. Thus, it appears that CD8 alpha may depend more on a protein kinase C-mediated signaling pathway, whereas CD4 may rely on greater tyrosine kinase activation. Such differential signaling via CD4 and CD8 has implications for thymic ontogeny and T cell activation.  相似文献   

11.
12.
Systemic lupus erythematosus (SLE), which spontaneously develops in (NZB (New Zealand Black) x NZW (New Zealand White)) F1 mice, is strictly dependent on CD4+ T cells. We found that in these mice with overt SLE, CD4+ T cells expressing CD69 molecules, an early activation Ag, are dramatically increased in peripheral lymphoid tissues and inflammatory infiltrates in the kidney and lung, but not in peripheral blood, while CD8+ and NK1.1+ T cells were virtually CD69-. Various adhesion molecules, including LFA-1, ICAM-1, CD43, CD44, P-selectin, and E-selectin, were up-regulated. Analysis of the TCR repertoire showed no skewed TCR Vbeta usage. Studies on in vitro cytokine production of spleen cells on TCR cross-linking indicated that compared with findings in young mice, the aged mice showed severely impaired production of IL-2, IL-3, and IL-4, whereas the levels of IL-10 and IFN-gamma remained relatively intact. FACS-sorted CD69-CD4+ T cells from aged mice produced substantial amounts of these cytokines, including IL-2, IL-3, and IL-4, whereas CD69+CD4+ T cells were poor producers. Intriguingly, when cocultured, CD69+CD4+ T cells significantly inhibited the production of IL-2 by CD69-CD4+ T cells. IL-2 production by spleen cells from young mice was also markedly inhibited in the presence of CD69+CD4+ T cells obtained from aged mice. We propose that CD69+CD4+ T cells that are continuously activated by self peptides bound to MHC class II molecules in (NZB x NZW)F1 mice may be involved in the pathogenesis of SLE through abnormal regulatory effects on cytokine balance.  相似文献   

13.
The Gal beta(1-3)GalNAc-binding lectin jacalin is known to specifically induce the proliferation of human CD4+ T lymphocytes in the presence of autologous monocytes and to interact with the CD4 molecule and block HIV-1 infection of CD4+ cells. We further show that jacalin-induced proliferation is characterized by an unusual pattern of T cell activation and cytokine production by human peripheral blood mononuclear cells (PBMC). A cognate interaction between T cells and monocytes was critical for jacalin-induced proliferation, and human recombinant interleukin (IL)-1 and IL-6 did not replace the co-stimulatory activity of monocytes. Blocking studies using monoclonal antibodies (mAb) point out the possible importance of two molecular pathways of interaction, the CD2/LFA-3 and LFA-1/ICAM-1 pathways. One out of two anti-CD4 mAb abolished jacalin responsiveness. Jacalin induced interferon-gamma and high IL-6 secretion, mostly by monocytes, and no detectable IL-2 synthesis or secretion by PBMC. In contrast, jacalin-stimulated Jurkat T cells secreted IL-2. CD3- Jurkat cell variants failed to secrete IL-2, suggesting the involvement of the T cell receptor/CD3 complex pathway in jacalin signaling. IL-2 secretion by CD4- Jurkat variant cells was delayed and lowered. In addition to CD4, jacalin interacts with the CD5 molecule. Jacalin-CD4 interaction and the proliferation of PBMC, as well as IL-2 secretion by Jurkat cells were inhibited by specific jacalin-competitive sugars.  相似文献   

14.
CD4+ memory T cells coordinate immune responses against viruses and other pathogens via the Ag-induced secretion of potent effector cytokines. The efficacy of these responses depends on both the overall number of pathogen-specific memory T cells and the particular array of cytokines that these cells are programmed to secrete. Here, we provide evidence that heterogeneity in Ag triggering thresholds constitutes an additional critical determinant of memory T cell function. Using a novel assay that allows single-cell detection of Ag-specific T cell cytokine production, we demonstrate that CMV-specific CD4+ memory cells from human peripheral blood display pronounced differences in their costimulatory requirements for Ag-induced triggering of IFN-gamma and IL-2 secretion, ranging from cells that trigger with little costimulation (e.g., resting APC alone) to cells requiring potent costimulation through multiple pathways (resting APC plus multiple costimulatory mAbs, or activated APC). These differences in costimulatory requirements are independent of clonal differences in TCR signaling intensity, consistent with an intrinsic activation-threshold heterogeneity that is "downstream" from the TCR. Thus, "effective" frequencies of Ag-specific CD4+ memory T cells appear to depend on the activation status of available APC, a dependence that would allow the immune system to rapidly adjust the number of functional Ag-specific memory T cells in a particular effector site according to local conditions.  相似文献   

15.
Unlike TCR-alpha beta cells, TCR-gamma delta cells express a distinct member of the zeta family, the gamma-chain of Fc epsilon RI (Fc epsilon RI gamma) within the TCR complex. To study the role of the Fc epsilon RI gamma-chain in TCR-gamma delta cells, a TCR-gamma delta transgenic mouse (G8) has been crossed with CD3 zeta-chain-deficient mice (G8.zeta-/-). Thy-1+ spleen and lymph node cells of these animals expressed low levels of CD3/TCR. These results suggested that the zeta-chain is required for effective TCR transport to the cell surface. In contrast, intraepithelial TCR-gamma delta cells of G8.zeta-/- mice expressed high levels of TCR. Immunoprecipitation with anti-CD3 showed that Fc epsilon RI gamma-chains were associated with the TCR complex in T cells isolated from zeta-deficient mice. Although the Fc epsilon RI gamma-expressing T cells proliferated in response to stimulation by TCR-specific Abs including anti-CD3 epsilon, anti-pan gamma delta, and anti-V gamma 2 mAb, the G8.zeta-/- T cells did not respond to the G8-specific Ag (T10b), anti-Thy-1 mAb, or Con A. The unresponsiveness to the Ag was not due to the reduced TCR expression, because intraepithelial TCR-gamma delta cells from the zeta-deficient mice did not respond to Ag. The inability of the G8.zeta-/- T cells to respond to Ag could not be overcome by providing an anti-CD28 costimulatory signal or by adding exogenous rIL-2. Taken together, our data suggest that the Fc epsilon RI gamma-chain associates with the TCR-gamma delta complex in the absence of the zeta-chain, but it is not able to substitute for the zeta-chain for effective transport of TCR to the cell surface or functional responses to Ag.  相似文献   

16.
Activation of T lymphocytes by T-cell receptor (TCR) ligands such as peptide/MHC complexes, superantigens or anti-TCR mAbs, or by pharmacological activators of protein kinase C such as phorbol esters, results in the internalization and cell surface downregulation of TCRs. We investigated the role of internalization motifs located in the cytosolic region of CD3 gamma in the internalization of TCR complexes induced by enterotoxin superantigens, anti-TCR mAbs or phorbol esters. To this end, a series of CD3 gamma mutants were expressed in a CD3 gamma-deficient variant of the human T-cell line Jurkat. We found that serine126 and the di-leucine motif (Leu131-Leu132) are required for phorbol-ester-induced TCR downregulation, but they are not necessary for enterotoxin superantigen or antibody-induced TCR downregulation. Moreover, the tyrosine-based motifs (residues 138 to 141 and 149 to 152) are not required either for phorbol aster or for superantigen or antibody-induced TCR downregulation. Confocal microscopy analysis reveals that TCR complexes accumulate in an early endocytic/recycling compartment upon activation of cells with phorbol esters, whereas TCRs internalized upon activation with superantigen or anti-TCR mAbs are routed to lysosomes. Consistent with this intracellular localization, TCRs internalized in response to phorbol ester are not degraded and can be reexpressed on the cell surface. In contrast, TCRs internalized upon superantigen activation are degraded.  相似文献   

17.
Effector functions of CD4-CD8- double negative (DN) alpha beta TCR+ cells were examined. Among mouse DN alpha beta TCR+ thymocytes, NK1.1+ cells expressing a canonical V alpha 14/J alpha 281 TCR but not NK1.1- cells produce IL-4 upon TCR cross-linking and IFN-gamma upon cross-linking of NK1.1 as well as TCR. Production of IL-4 but not IFN-gamma from DN alpha beta TCR+NK1.1+ cells was markedly suppressed by IL-2. Whereas V alpha 14/J alpha 281 TCR+ cells express NK1.1+, these cells are not the precursor of DN alpha beta TCR+NK1.1+CD16+B220+ large granular lymphocytes (LGL). IL-2 induces rapid proliferation and generation of NK1.1+ LGL from DN alpha beta TCR+NK1.1- but not from DN alpha beta TCR+NK1.1+ cells. LGL cells exhibit NK activity and produce IFN-gamma but not IL-4 upon cross-linking of surface TCR or NK1.1 molecules. In contrast to IL-2, IL-7 does not induce LGL cells or NK activity from DN alpha beta TCR+NK1.1- cells but induces the ability to produce high levels of IL-4 upon TCR cross-linking. Our results show that DN alpha beta TCR+ T cells have several distinct subpopulations, and that IL-2 and IL-7 differentially regulate the functions of DN alpha beta TCR+ T cells by inducing different types of effector cells.  相似文献   

18.
One of the functions of surface CD38 is the induction of phosphorylation of discrete cytoplasmic substrates and mobilization of cytoplasmic calcium (Ca2+). The present work addresses the issue of whether the signaling mediated via CD38 operates through an independent pathway or, alternatively, is linked to the TCR/CD3 signaling machinery. We studied the signals elicited through CD38 by the specific agonistic IB4 monoclonal antibody (mAb) by monitoring the levels of cytoplasmic Ca2+ and the induced phenotypic and functional variations in T cell growth. IB4 mAb presented the unique ability to increase cytoplasmic Ca2+ levels, which correlated with the phosphorylation of the PLC-gamma1. These effects were blocked by phorbol 12-myristate 13-acetate (PMA) and were dependent on the presence of a functional TCR/CD3 surface complex, no effects being recorded on mutant Jurkat cells lacking part of the CD3 structures. CD38 signaling appeared to share with TCR/CD3 the ability to induce apoptotic cell death in Jurkat T cells, an event paralleled by specific up-regulation of the Fas molecule and inhibited by cyclosporin A. CD28, a costimulatory molecule, is synergized by increasing CD38-induced apoptotic cell death. The results indicate the existence of a strong functional interdependence between CD38 and TCR/CD3.  相似文献   

19.
While little is known about their activation requirements and function, the intraepithelial T cells of the murine vagina express TCR complexes in which the antigen recognition components and the signaling components have unusual features. These vaginal T cells express an invariant V gamma 4/V delta 1 TCR and appear to be the only intraepithelial gamma delta T cells that exclusively use FcR gamma chains in their TCR complex. To further characterize the vaginal gamma delta T cells we isolated them from normal mice and from mice injected systemically with an activation-inducing dose of anti-TCR mAb. The isolated gamma delta T cells were examined by flow cytometry for their surface expression of a panel of adhesion, proteins, activation antigens and cellular interaction molecules (CD44, CD62L, CD45RB, LFA-1, CD2 and CD28). The patterns of expression observed indicate that the vaginal gamma delta T cells of normal mice show the phenotype of effector T cells. The adhesion/co-stimulatory molecules CD28 and CD2 were not detected on vaginal gamma delta T cells, an interesting finding since the absence of CD2 from other T cells has been suggested to result in anergy. However, vaginal gamma delta T cells are responsive to TCR-mediated signals since injection of normal mice with pan-anti-TCR antibody or stimulating anti-gamma delta TCR antibody resulted in an increase in cell number and increased expression of transferrin and IL-2 receptors. These results indicate that vaginal gamma delta T cells might utilize other co-stimulatory molecules, if any, in connection with TCR-induced activation and differentiation. While the physiological function of vaginal gamma delta T cells remains unknown, the expression of an invariant V gamma 4/V delta 1 TCR, their exclusive use of gamma chain homodimers in their TCR, and the absence of CD2 and CD28 co-stimulatory molecules are a novel combination of properties that suggests specialized functional properties. Although vaginal gamma delta T cells share some features in common with gamma delta T cells that reside in other epithelial tissues, such as skin and intestine, the present studies provide additional evidence that vaginal gamma delta T cells are a highly specialized and distinct T cell population.  相似文献   

20.
Engagement of alpha-beta T cell receptors (TCRs) induces many events in the T cells bearing them. The proteins that transduce these signals to the inside of cells are the TCR-associated CD3 polypeptides and zeta-zeta or zeta-eta dimers. Previous experiments using knockout (KO) mice that lacked zeta (zeta KO) showed that zeta is required for good surface expression of TCRs on almost all T cells and for normal T cell development. Surprisingly, however, in zeta KO mice, a subset of T cells in the gut of both zeta KO and normal mice bore nearly normal levels of TCR on its surface. This was because zeta was replaced by the Fc epsilon RI gamma (FcR gamma). These cells were relatively nonreactive to stimuli via their TCRs. In addition, a previous report showed that zeta replacement by the FcR gamma chain also might occur on T cells in mice bearing tumors long term. Again, these T cells were nonreactive. To understand the consequences of zeta substitution by FcR gamma for T cell development and function in vivo, we produced zeta KO mice expressing FcR gamma in all of their T cells (FcR gamma TG zeta KO mice). In these mice, TCR expression on immature thymocytes was only slightly reduced compared with controls, and thymocyte selection occurred normally and gave rise to functional, mature T cells. Therefore, the nonreactivity of the FcR gamma + lymphocytes in the gut or in tumor-bearing mice must be caused by some other phenomenon. Unexpectedly, the TCR levels of mature T cells in FcR gamma TG zeta KO mice were lower than those of controls. This was particularly true for the CD4+ T cells. We conclude that FcR gamma can replace the functions of zeta in T cell development in vivo but that TCR/CD3 complexes associated with FcR gamma rather than zeta are less well expressed on cells. Also, these results revealed a difference in the regulation of expression of the TCR/CD3 complex on CD4+ and CD8+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号